



# EBI & Multi-breed Dairy Genomics

Andrew Cromie, ICBF. ICBF Genetics Conference, 17 January 2020.







#### The EBI – Trends & where to next?





Relative emphasis





## Genetic Gain in EBI, by year 1<sup>st</sup> calving

- Current rate of gain in EBI = ~€10/year.
  - Cumulative has delivered €1.8 bn to Irish dairy industry.
  - Each €10 gain = 61 kg less CO2 eq/lactation (~-1.5%/annum).
  - But, these gains have been "eroded" due to increase in size of cow herd (1.1m cows to 1.5m cows =>+~35%).
- With current rate of gain => EBI of National dairy herd in 2030 will be €230 => 430kt gain (MACC).
- Can we increase rate of gain from current €10/cow/year to €15/cow/year?

Genetic Gain in EBI for 1st calving females.









## Increasing genetic gain

- Where can we achieve improvements;
  - Increased usage of young GS bulls.
  - New traits, e.g., calving, maintenance, beef, age slaughter, health, direct measurement of GHG (GreenBreed).
  - More genotyping => DNA calf reg.
  - More accurate data for genomic predictions.
    - Updating training population to include females & extending to multiple breeds.
    - Blending genomic proofs.
  - Others....









#### Use of "younger" GS bulls.



- Younger GS bulls (3-year old bulls) are €25 ahead of proven bulls (~6 year old bulls) and €70 ahead of stock bulls.
- Trends are same => simple genetic lag re: getting best genes into our dairy population.
- Need to increase usage of younger GS bulls & remove older AI & stock bulls.
  - Even use of teams (~10 bulls) of high EBI bulls is key.



## **Genomic selection.**









## Updating Training Population.

| Milk Traits         | Animals in training |        |        | Breed  |       |
|---------------------|---------------------|--------|--------|--------|-------|
|                     | Male                | Female | Total  | HO/FR  | Other |
| Current             | 10,290              | 0      | 10,290 | 10,290 | 0     |
| + other breed males | 10,628              | 0      | 10,628 | 10,327 | 301   |
| ++ females.         | 10,690              | 19,934 | 30,624 | 28,285 | 2,339 |

| Calving interval    | Animals in training |        |        | Breed  |       |
|---------------------|---------------------|--------|--------|--------|-------|
|                     | Male                | Female | Total  | HO/FR  | Other |
| Current             | 9,285               | 0      | 9,285  | 9,285  | 0     |
| + other breed males | 9,622               | 0      | 9,622  | 9,323  | 299   |
| ++ females          | 9,484               | 31,258 | 40,742 | 37,058 | 3,684 |

- Training population updated with; (i) other breed males, and (ii) females (all dairy breeds).
- System to now routinely add new males/females to training population (as per beef).
- GreenBreed project.





#### Results – Milk Sub Index.





| Sex    | Ν     | Mean     | Std Dev  | Minimum | Maximum |
|--------|-------|----------|----------|---------|---------|
| Male   | 10690 | 26.29162 | 38.78305 | -120.88 | 165.86  |
| Female | 19934 | 35.69475 | 32.44963 | -130.5  | 180.08  |
| All    | 30624 | 32.41237 | 35.07861 | -130.5  | 180.08  |







#### Results – Fertility Sub Index





| Sex    | Ν     | Mean     | Std Dev  | Minimum | Maximum |
|--------|-------|----------|----------|---------|---------|
| Male   | 8591  | 6.048867 | 68.75077 | -328.02 | 182.2   |
| Female | 19284 | 43.4668  | 47.31685 | -183.21 | 311.36  |
| All    | 27875 | 31.93469 | 57.48042 | -328.02 | 311.36  |



ICB





#### Results – Validation.

| Traits  | Validation  | EBV  | Current GEBV<br>(males in training) | New GEBV<br>(males + females in training) | Relative gain in<br>accuracy (%) |
|---------|-------------|------|-------------------------------------|-------------------------------------------|----------------------------------|
| Milk    | Correlation | 0.61 | 0.68                                | 0.73                                      | 20%                              |
| Fat     | Correlation | 0.43 | 0.56                                | 0.62                                      | 44%                              |
| Protein | Correlation | 0.51 | 0.64                                | 0.68                                      | 33%                              |
| SCC     | Correlation | 0.58 | 0.62                                | 0.68                                      | 17%                              |
| CIV     | Correlation | 0.37 | 0.40                                | 0.43                                      | 16%                              |

- Validation based on EBV from current evaluation for 262 sires born after 2010 with at least 50 daughters in milk.
- Correlation is improving for all traits => increase accuracy of genomic prediction.
- Internal validation mechanism to assess ongoing improvements in accuracy of training population.







#### Results – Impact on Active AI Bulls.



- Minimal impact on milk sub-index (+/- €10).
- Considerable impact on fertility sub-index (+/- €40).





## Blending genomics.





 Previous based on decision rules, e.g., genomic => daughter proven. Not continuous blending approach => more "stable".







## Updating Maintenance Sub Index.

- Current maintenance sub index (Cull cow weight PTA \* EW).
- New maintenance sub-index (Live-weight PTA \* EW).
- Previously Maintenance sub index derived solely from cull cow weights.
  - More cull cow weights than cow live weights. Standard conversion applied, but new research has highlighted important breed differences.
  - Increasing volumes of actual cow live-weight data (1m+) => GreenBreed.
  - Switch to using cow live-weight directly.









#### Results - Maintenance sub-index.



Based on Alive AI bulls Nov'19 evaluation

• JE breed cows losing slightly & Red breed cows gaining slightly.







#### Results – Overall EBI.



- Changes in genomics, blending, calving & cow maintenance;
  - Little change in ave EBI.
  - r=0.95, so some re-ranking (+/- €50). Due to more accurate training population.
- Gains in reliability (~50%=> ~60%) => more confidence in breeding decisions, especially for young GS bulls.







### Take Home Message.

- EBI is working (year on year gains in fat, protein, fertility, survival....).
- Several improvements introduced to dairy genetic evaluations this Spring.
  - New Calving Evaluations, including "risk for use on heifers" trait.
  - New dairy genomics, including females and other dairy breeds.
  - Update of maintenance sub-index.
- Little change in average EBI, but some changes in individual bulls
  - Updated training population => more accurate genetic/genomic evaluations.
- Use teams of high EBI bulls evenly on your herd this Spring.

