

IRISH CATTLE BREEDING FEDERATION

Female Fertility - Are we at the limit or can we further improve using genetics?

Francis Kearney

Department of Agriculture, Food and the Marine An Roinn Talmhaíochta, Bia agus Mara

Genetic Improvement

The three chickens you see above were raised on the exact same diet, for the same length of time, and under the same conditions. The left-hand chicken is a breed from 1957. The middle chicken is a breed from 1978. The right-hand one is a breed from 2005.

Genetic Improvement

AgTech – it's in our DNA

Female Fertility

- Causes of poor fertility are complex and multi-factorial
 - Genetics
 - Health
 - Management
 - Nutrition
- Infertility is still a large cost of dairy farms
- Intense selection for milk production led to a reduction in fertility =>genetic impact
- Heritability > 0 & large genetic variability across sires

Distribution of AI sire CI PTA

AgTech – it's in our DNA

Teagasc Next Gen 2013 - 2016

	Elite	NatAv
Submission rate (%)	92	86
Pregnancy rate first service (%)	60	46
6 week in-calf rate (%)	73	58
Final pregnancy rate - 12 wks (%)	92	81
Calving to conception interval (days)	93	97
No. of services	1.57	1.77

Current Evaluation

- Multi-trait model with 23 genetically correlated traits
 - Calving interval (parity 1 to 5)
 - Survival (parity 1 to 5)
 - Milk (parity 1 to 5)
 - Number of Inseminations (parity 1 to 3)
 - Calving to first service (parity 1 to 3)
 - Age at first calving
 - Lifespan

Genetic Trends

Genetic Trends for CI and SURV for females by birth year

Phenotypic Trends

Calving Interval For Parity 1 animals

Genetic Trends

Genetic Trend for Fat and Protein

Trends in Fertility in USA

AgTech – it's in our DNA

Source:

CDCB

2018

Current Evaluation

- Current model has done a very good job in reversing the negative genetic trend in fertility
- Genetic trends for production still increasing!
- Complex model based on calving interval but not accounting for compactness of calving

Current evaluation

Challenges

- Calving interval does not account for the voluntary waiting period (**VWP**)
- Most fertile cows not rewarded for fertility performance

Trait definitions

CSD – calving season day

The difference in days between planned start of calving for a contemporary group and actual calving

 \Box TCD – time of conception day

The difference in days between planned start of mating for a contemporary group and the last mating that resulted in pregnancy

GL- Look at the impact of gestation length on fertility independently

Seasonal or non-seasonal herd?

Fertility evaluation

	Cow	AFC Age at first calving	CSD Calving season day	TCD Conception day	CINT Calving interval	NS Number of services	SURV Survival	MILK 305d yield
Seasonal	101	x	x	x			x	x
	102	x	x	x			х	x
	103	x	х	x			х	х
Non- seasonal	201	х			х	х	х	х
	202	х			х	х	х	х
	203	х			х	х	х	х

Future Work

- Continue research on better trait definitions for compactness of calving
- New predictors/traits/genetics markers will become available in time
- Improving genomic predictions for animals
 - Increasing the reference population
 - Single step methodology

Conclusions

- Clearly not at the limits but genetic selection a key tool to help improve fertility at farm level
- Significant improvements have been made in a relatively short period of time
- Production trends still on an upward trajectory
- Methods to predict EBV will evolve but good quality data essential to maintain favourable genetic trends

Our Farmer & Government Representation

Acknowledging Our Members