

IRISH CATTLE BREEDING FEDERATION

Meat quality. What is the future and why is it important?

ICBF Background

- ICBF Formally Established in 2000.
- Membership/Board: AI companies (18%), Milk Recording (18%), Breed Societies (18%) & Farmer Organisations (46%).
- Stakeholders in cattle breeding control decision making.
- Mission: To achieve the greatest possible genetic improvement in the national cattle herd – Dairy & Beef.

Recent history of beef evaluations

Within breed muscle and skeletal for LM, CH, SI 40,000 recs Calving (200,000) and Carcass evaluations (100,000 records)

Fertility and milkability evaluations. First overall beef profit indexes

39 million pedigrees Calving 10 million Livewts 4 million Mart 2 million Carcass 7 million Fertility 4 million 50,000 foreign ebvs

750,000 genotypes

2005	2007	2010	2013	2015
Key events	2008-20 suckler scł 40,000 he	12 20 neme BDI erds	13-2014 P scheme	2015-2020 BDGP scheme

How does ICBF make an impact?

The body in charge of the recording and processing of all data in Irish cattle breeding.

Genetic Indexes

€uro-Stars

Intended to help farmers to make more profitable and efficient breeding decisions.

What is meat quality?

Meat quality is defined by the compositional quality (lean to fat ratio) and the **palatability factors** such as visual appearance, smell, firmness, juiciness, tenderness and flavour.

Beef Primal Cuts

Meat quality - Why is it important?

- Consumer tracking data (Pelegrin Research Group, 2014; Lusk and Murray, 2015) suggest that "taste" is number 1 attribute for majority of consumers and is the primary reason consumers purchase beef when compared with other types of meat.
- Consumers want to "trade up". In the USA Certified Angus Beef®(CAB) increased by 112 percentage points between 2009 and 2014, whereas demand for commodity Choice beef declined by 2 percentage points (Zimmerman and Schroeder, 2013; Suther, 2015).
- Consumers don't buy carcasses. Consumers want to buy guaranteed meal results (Dr. Rod Polkinghorne).
- Consumers take up to 3 months to purchase beef after a bad experience.
- Finishers are generally not rewarded for eating quality apart from some breed premium schemes. Despite, recent studies showing that there is more variation within breeds for meat tenderness than between breeds (Koohamaraie etc al., 2005).
- There is a need for farmers and processers to work together to produce a more consistent product for consumers.

Can we breed for better meat eating quality?

- Huge improvements in meat eating quality over past 10 years (e.g., animal handling, slow-chilling, hip-hanging & dry-age process).
- However, genetic influence for meat eating quality needs to be further explored as genetic improvement is cumulative and permanent.
- Breed premium schemes in place in Ireland (Angus, Shorthorn & Hereford).
- Objective: Quantify the influence of genetics on meat eating quality and identify the best sires for the trait to be used in the national breeding program.

12

 1,506 (1169 bulls and 340 steers) animals finished at Tully test Station
 Slaughtered from 2013 to present
 All progeny of Al sires – DNA verified

eolle

Measurements obtained

- Acclimatisation period: (30 days).
 Vaccination IBR, BVD, RSV, PI3, Blackleg & other clostridia diseases.
- Diet
 - Bulls (ad-lib concentrates); Steers (8 kg concentrates & 5 kg hay freshweight)
- Performance test measures (90 day testing period).
 - Average daily gain (g/day), Feed conversion efficiency (DMI/ADG), Linear Scores, Scanned muscle and fat depth and intramuscular fat (mm) & Scrotal circumference (cm).
- Health & disease traits.
 - Recording lameness, genetic defects, pneumonia and other illnesses.
- ✤ Genomics.
 - Genotyped using customised chip.
- ✤ Age at slaughter
 - Bulls (15-18 months)
 - Steers (17-23 months of age)

Measurements obtained at the factory

- Meat quality
- Carcass wt, fat and conformation
- Primal yields
 - British spec
 - •19 different cuts
- ·pH
 - Hourly and ultimate

Measurements obtained cont'd

- Meat eating quality
- •Colour of loin
- •Visual marbling of the loin
- Composition analysis
 - Intramuscular fat %, protein % & moisture
- Cook loss and shear force
- \cdot Sensory analysis

Sensory analysis

Meat Tasting Phenotypes

3 phenotypes: Tenderness, Juiciness, & Flavour - Scored 1 to 9

Meat Tasting Protocol

Longissimus thoracis muscle from right side of each carcass 2.5cm steaks and vacuum packed. Steaks were aged for 14 days before being frozen. They were then thawed at 4°C 24 hours before analysis

Grilled to a 'medium' cooking finish, allowed to rest for two minutes. Data was collected using trained panelists.

- Eolas International, Co. Cork
- 7-10 trained panellists
- \cdot http://www.eolasinternational.com

Heritability for eating quality traits

In order to make genetic progress a trait must be heritable. A heritable trait is one that is passed from a parent to offspring.

Heritability - International studies

Breeds and Bulls

TENDERNESS EBV BY A.I. SIRES BREED

Top Romantic A.I. bulls in Ireland: Best for Tenderness

								Birth	
Breed	Internatio	nal ID		Name				year	
Angus	AANIRLM	L2165762	0895	LISDUFF D	ANDY K8	95		2010	
Belgian Blue	BBLBELMO	0045571	.6400	KUBITUS D	E BRAY			2009	
Charolais	CHAFRAM	0081305	62111	ULRICH				2003	
Hereford	HERGBRM	7004952	00634	DENDOR 1	KOHINO	OR PP		2012	
Limousine	LIMFRAM	00361503	30964	ROCKY				2000	
Salers	SALFRAM	00199800	4082	CORLURGA	AN OURS	ON		1998	
Simmental	SIMAUTM	0002765	70944	ENFIELD H	URRICAN	IE HUGO		1988	
-0.6 7	HE	BB	AA	ĹM	сн	SA	SI		
Gnaph limited	d to 1040 A.I. sires	of AA, BB, CH,	HE, LM, SA,	and SI breeds					

5 star versus 1 star comparison

✤ Analysis on 1000 bulls

	Terminal in	€uro-Star dex	
	One star	Five star	Difference (€)
Total feed consumed (kg)	1302	1250	14
Av. age at slaughter (days)	496	481	30
Carcass weight (kg)	394	408	56

Terminal €uro-Star index

	One star	Five star
Conformation score	U-	U+
Total meat (kg)	314	324
Tenderness (scale 1-9)	5.87	6.24
Juiciness (scale 1-9)	5.81	6.28
Flavour (scale 1-9)	5.74	6.08

Consumer Validation

*****Key points

The ICBF has developed a genetic index for beef eating-quality.
 Data from 1,200 bulls fed at Tully progeny-testing centre used to develop index.

Tested on 101 consumers at BEEF 2016. Given two steak samples, one from a high- and one from a lowindex animal.

Asked to identify high eating-quality index beef.

⊃75% correctly identified the highindex eating quality beef.

Consumer validation cont'd

	ICBF consumer tasting session, Teagasc Grange BEEF 2016, 5 July 2016							
	High eating-quality steak Low eating-quality steak					Consu	mer selected "high"	
Pair	Breed	Tag No.	EBV	Breed	Tag No.	EBV	High EBV	Low EBV
1	BB	176	3.3	BB	402	-0.3	5	2
2	СН	119	3.6	СН	957	-3.2	6	1
3	СН	305	2.8	СН	943	-3.6	5	2
4	LM	188	2.9	LM	485	-4.0	7	0
5	LM	190	2.5	LM	414	-2.9	4	3
6	LM	537	2.2	LM	956	-5.6	6	1
7	SA	183	1.7	SA	191	-1.6	7	0
8	AA	291	2.3	AA	234	-2.4	7	0
9	BB	311	2.6	BB	412	0.0	3	4
10	СН	966	3.0	СН	536	-3.0	5	3
11	СН	193	2.2	СН	680	-0.1	3	4
12	LM	300	2.4	LM	947	-1.0	5	3
13	LM	317	2.2	LM	240	-0.1	6	2
14	SI	647	-0.2	SI	644	-6.7	6	1
			2.4			-2.5	75	26

Role of genomics

- Ireland recently rolled out a Beef data genomics program (BDGP)
- Focused on breeding more profitable, sustainable and carbon efficient cows.
- Funded from EU Rural Development Program.
 - Under article 28 (Climate + Environment).
 - Co-funded by Irish government (DAFM).
- €300m total funding 6 years (2015-2020)
 - Farmers paid ~€90/cow/year to complete 6 actions
- ~2.5m animals will be genotyped during period of scheme.

What is Genomics?

- The use of DNA information to predict how good an animal might be. Important tool in accelerating genetic gain
- Up to know we relied on parentage information on young animals
- We then need to wait until they have progeny to see how good they 'breed'
- DNA gives an extra 15-30% in terms of reliability.
- This is added to the existing €uro-Star indexes of the animal => more accurate evaluation.

Role of genomics for eating quality

Genetic evaluation using genomics will allow for more accurate accurately identification of the the best bulls for eating quality

LISDUFF DANDY

	LONG-STAN MOL	<u>^</u>	fichr - April 201		
onomic Indexes	Euro Value	Index Reliability	Star Rating across all beef breeds		
CHARLES STREET	2000 (2010) V	and the second s			

ranges stores				
*****	Replacement	€198	48% (Ave.)	****
	Maternal Cow Traits	€109	33%	
	Maternal Progeny Traits	€88	62%	
****	Terminal	€52	60% (High)	****

CUDO CTAD IND

EVDECT	DOCENIY	DEDEODI	ANCE
EXPEU	SUGENT	PERFORM	IANCE

Star Rating within Angus breed	Key Profit Traits	Index Value	Trait Reliability	Star Rating across all beef breeds
	Calving difficulty (% 3 & 4) Breed ave: 2.28%. All breeds ave: 4.99%	5.00%	93% (V.High)	
*****	Docility (1-5 scale)	-0.04	67% (High)	*****
****	Carcass weight (kg)	14 kg	53% (Ave.)	*****
*****	Carcass conformation (1-15 scale)	0.81	40% (Ave.)	****
	EXPECTED DAUGHTER BREEL	DING PERF	ORMANCE	
	Daughter calving difficulty (% 3 & 4)	4.6%	23% (Low)	
****	Daughter milk (kg)	15.64 kg	28% (Low)	****
****	Daughter calving interval (days)	-7.85 days	34% (Low)	****

PEDIGREE

- Sire: Aynho Rossiter Eric B125 AYR
- Dam: Lisduff Della C448 IE121657690448
- MGS: Dalrene Cruz 11F DAZ

 Dandy is Ireland's No.1 Angus bull for commercial suckler farmers.

Star Rating within

Innue hrood

- Progeny are truly superb exhibiting consistency, length, style, muscling and character.
- High index Terminal (5 Star) and Replacement Index (5 Star).

Semen available from:

ZFL

- April 2014

Meat quality. What next?

- In Ireland carcasses are graded mechanical carcass grading has replaced visual grading
 - \checkmark Video imaging analysis (VIA) system

EUROP Classification to grade carcasses

Conformation

€uro-Star indexes

Currently we use carcass weight, conformation and fat score as part of our genetic evaluations for terminal and replacement €uro-Star Indexes.

Predicting cuts using VIA images

- 8% of carcass weight accounts for over 30% of carcass value (Drennan et al., 2008)
- Converting images into cut weights

Validation results

	Carcass weight (CCW)	CCW plus EUROP	CCW plus VIA
Total meat	0.91	0.97	0.97
Total fat	0.33	0.74	0.77
Total bone	0.66	0.79	0.81
Lower Value Cuts	0.97	0.89	0.92
Medium Value Cuts	0.74	0.79	0.86
High Value Cuts	0.75	0.89	0.93
Very High Value Cuts	0.74	0.85	0.84

T. Pabiou et al. / Livestock Science 137 (2011) 130–140

- Since 2007 ICBF have being storing 1.6 million VIA images per year.
- Further develop and validate the prediction equations for VIA images across genders using 81630 carcasses.

Conclusions

- Meat eating quality exhibits genetic variation. No differences between breeds.
- Need to collect more data Excellent industry engagement in the collection of relevant phenotypes.
 - Look more closely at more routinely available predictors (pH, shear force, image data.....)
 - Assign a monetary value for each unit increase in eating quality with a view to publishing a genetic index for eating quality.
 - Genomics is going to play an important role in identifying elite sires for meat quality.
- VIA are an important tool to predict carcass cuts and composition.
 - All stages of the food chain can effect meat quality. Therefore everyone has to work together to ensure consumers consume more beef and are willing to pay appropriately in order to return a profit to all involved.

٠

•

٠

•

Thank You!