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Objectives:
• Compare pedigree, 2-step and single step genomic methods
• Assess impact of half sibs in training population

Dataset
• 5912 trained sensory panel phenotypes
• 3 traits: Tenderness, Flavor, Juiciness
• All commercial multi-breed cattle 
• 90% of animals also genotyped (50k IDB)

Conclusions
• Single step yielded best prediction accuracy for both correlation and slopes
• Increasing half sib representation in training increased prediction accuracy
• Single step GEBVs for meat quality are now routinely published in Ireland

Methods
• Multi-trait (x3) across breed animal model 
• 2 step SNPBLUP and blending (Van Raden, 2009)
• Single step GBLUP (Christensen & Lund, 2010)
• Mix99 (LUKE, Finland)

Validation
• Sire level: 49 AI sires with a min of 25 progeny 

• r(DYD,GEBV), regression slopes
• Animal level: random 12 progeny from validation sires

• r(YD,GEBV), regression slopes
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Abstract 
The objective of this study was to develop single step genomic breeding values (ssGEBV) for 
meat tenderness, juiciness and flavour and compare with two-step genomic breeding values as 
well as non-genomic (i.e., traditional) breeding values (EBV); the comparison also involved 
testing the impact on the accuracy of the (G)EBVs by altering the number of half sibs in the 
training population. A residual polygenic single step GBLUP and a two-step genomic approach 
was applied to 5,262 genotyped and phenotyped animals. Including genomic information 
improved the prediction accuracy and this accuracy also improved as the number of half sib-
progeny in the training population increased. Moreover, applying single step genomic 
approaches were associated with further improvements in prediction performance across all 
traits. 
 
Introduction 
Meat eating quality (MEQ) impacts repeat purchase of meat by consumers; this is particularly 
important for beef meat which is often more variable in quality than many other meat types. 
MEQ is often depicted by meat tenderness, juiciness, and flavour. Whereas heterogeneity is 
often viewed as an inconvenience, animal breeders require variability to achieve genetic gain. 
Nonetheless, genetic gain eventually translates into phenotypic changes which is a function of 
how well estimates of genetic merit translate into expected phenotypic differences but also the 
acceptance of stakeholders that (products from) individuals divergent in genetic merit will truly 
be reflective in phenotypic differences. Validation of genetic evaluations is therefore key to 
stakeholder acceptance. The accuracy of estimates of genetic merit can be improved using 
widely available genomic information. Integrating phenotypic, pedigree and genomic data to 
achieve high prediction performance is a modelling challenge. Therefore, the objective of the 
present study was to evaluate alternative strategies of combining these data to predict genetic 
merit and, by extension, phenotypic performance.  
 
Materials & Methods 

Data. Tenderness, juiciness and flavour sensory data were available on 5,912 crossbred cattle 
consisting of 2,137 steers, 2,093 heifers and 1,682 young bulls. The main breed proportion of 
the animals was Angus (27%), Belgian Blue (5%), Charolais (12%), Holstein-Friesian (4%), 
Hereford (14%), Limousin (21%) and Simmental (8%). The phenotyped population was 
constructed to be as diverse as possible with the aim of a maximum of 20 progeny per sire. The 
generation of the meat sensory data including the standard operating procedures are described 
in detail by Judge et al. (2021) for a subset of the data set used. Each of the three traits were 
scored on a 1 to 10 scale: 1 = very tough and 10 = very tender; juiciness: 1 = not juicy and 10 
= very juicy; beef flavour: 1 = no beef flavour and 10 = very strong beef flavour. Of the 5,912 
animals with meat quality phenotypes, 5,262 were genotyped with the International Dairy and 
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Beef genotyping platform version3 (IDBV3; 50,855 SNPs). The number of animals in the 
pedigree was 95,674.  

Estimation of breeding values. Traditional breeding values (EBVs) as well as genomic 
breeding values (GEBVs) were estimated for three traits using the following linear mixed 
model: 
y = Xb + Wu + e 
where y is a vector of one of the sensory phenotypes for all animals in training set, X is the 
incidence matrix for fixed effects, b is the vector of fixed effects consisting of herd-by-date of 
slaughter, date-by-location of sensory analysis, gender of the animal, the age in months since 
slaughter of the meat sample, heterosis proportion class, month of analysis and breed 
proportion, W is the incidence matrix of random (genomic) effects, u is a vector of EBVs or 
GEBVs for all individuals, and e is a vector of random residuals. For the traditional genetic 
evaluation, it was assumed that  𝑢𝑢 ~ 𝑁𝑁 (0, 𝑨𝑨𝜎𝜎𝑢𝑢2) where 𝜎𝜎𝑢𝑢2 is the additive genetic variance and 
A is pedigree relationship matrix. For the estimation of GEBV using the GBLUP model, the A 
matrix was replaced with a genomic relationship matrix.  In the single-step GBLUP model, the 
A matrix was replaced with a H matrix where H was the combined relationship matrix 
(Christensen et al. 2012). The H matrix is constructed by blending the pedigree relationship 
matrix with the genomic relationship matrix) considering information from non-genotyped and 
genotyped animals simultaneously. The inverse of H-matrix was calculated according to 
Christensen & Lund (2010) and Aguilar et al. (2010): 

𝐇𝐇−𝟏𝟏 = 𝐀𝐀−𝟏𝟏 + �0 0
0 𝑮𝑮𝒘𝒘−𝟏𝟏 − 𝐀𝐀𝟐𝟐𝟐𝟐

−𝟏𝟏� 

where A-1 was the inverse of the pedigree-based relationship matrix, 𝐀𝐀𝟐𝟐𝟐𝟐
−𝟏𝟏 was the inverse of the 

sub-matrix of the pedigree-based relationship matrix for genotyped animals and Gw was 
calculated as follow: 
Gw = (α× G + β× A22) 
where Gw was the genomic relationship matrix, β = 1 – α where α = 0.70.  For all the 
computations, the MiX99 software (MiX99 development team, 2020) was used. 
The GEBVs from the two-step genomic evaluation are the result of blending the Direct 
Genomic Value (DGV) which was calculated by multiplying the SNP effects with the animals’ 
genotypes, traditional Parent Average (PA) and the EBVref from a traditional evaluation 
including only relationships among genotyped animals. The method for blending three sources 
of information (i.e., DGV, PA and EBVref.) to calculate the GEBV are described in detail by 
VanRaden et al. (2009).  
Training and testing population design. Three different scenarios were explored on a group of 
validation animals to assess prediction accuracy. First a group of 49 “well” proven sires with at 
least 25 progeny was identified. To build a validation set, a random 12 progeny from each of 
the 49 sires was sampled (i.e., 588 animals) with the remaining progeny of these sires, who did 
not appear in the validation set, being hereafter referred to as the remaining set. In the first 
scenario (S_I), none of the progeny from the well-proven sires were included in the training 
population. In the second scenario (S_II), a random seven progeny of each well proven sire 
from the remaining set was added to the training set; in the third scenario (S_III), all the 
remaining set progeny were added to the training set; only the phenotypic records of validation 
set were masked in this scenario. 
Prediction accuracy. The correlation between (G)EBV and the phenotypes (following 
adjustment for all non-genetic effects) of the validation animals was considered to represent the 
prediction accuracy at the animal level for all three scenarios. In addition, to assess prediction 
performance at sire level, the correlation between validation sires’ (G)EBVs from S_I in which 



none of their progeny were in training set with their daughter yield deviation (DYD) was 
calculated. DYD were calculated based on the average yield deviation from the progeny of each 
sire including all phenotypic records (full data set).  
 
Results and Discussion 
Validation results from (single)two-step genomic evaluation as well as traditional EBVs for 
three scenarios at the animal level are presented in Table 1. Including genomic information and 
applying a single or two step genomic approach improved the prediction accuracy for all three 
traits compared with the EBVs from the pedigree-based relationship matrix. For example, the 
prediction accuracy for flavour increased from 0.09 to 0.17 following the incorporation of 
genomic information into the model and using two-step approach (i.e., S_III) with a similar 
pattern detected for the two other traits. Further increases in prediction accuracy were observed 
by implementing the single step genomic approach compared with the two-step method for all 
three traits and scenarios. Aguilar et al. (2010) demonstrated that ssGBLUP is a quick 
alternative to estimate GEBV when phenotypes, genotypes and pedigree are jointly available 
arguing that the automatic and proper definition of weighting factors to blend different sources 
of information were the main advantage of implementing this approach. In addition, Legarra et 
al. (2014) indicated that the appropriate weight to integrate various source of information avoids 
double counting of contributions emerging from genetic relationships and phenotypic records.  
 
Table 1: Correlations between the (genomic) estimated breeding value and adjusted 
phenotype for the three different scenarios at the animal level from three different 
approaches.  

 
Traits 

EBV Two-step GEBV Single step GEBV 
S_I1 S_II2 S_III3 S_I S_II S_III S_I S_II S_III 

Tenderness 0.03 0.09 0.13 0.09 0.11 0.15 0.11 0.14 0.17 
Flavor 0.09 0.14 0.20 0.17 0.18 0.22 0.21 0.21 0.26 

Juiciness 0.008 0.06 0.12 0.08 0.10 0.14 0.09 0.10 0.15 
1 S_I: none of the progeny from the well-proven sires were in the training population 

2 S_II:  a random seven progeny of each well proven sire from the remaining set was included in the training set 

3 S_III:  all the remaining set progeny were included in the training set 

 

By increasing number of half sibs in the training population (i.e., S_I to S_III), the accuracy 
increased for all three prediction approaches (i. e., traditional, (single)two-step GEBV). This 
improvement could be explained by increasing the genetic relationships between training and 
validation sets but also an enlargement of the training population size. De Los Campos et al. 
(2013) indicated that the genetic relationships between training and validation set as well as 
training population size were the most important factors affecting prediction performance for 
GBLUP. 
Validation results at the sire level for the three different prediction approaches for S_I in which 
none of the identified sires’ progeny were included in the training population are shown in 
Table 2. The results demonstrate that incorporating genomic information and applying the 
(single)two-step genomic approach improved the prediction accuracy for all three traits. For 
instance, the prediction accuracy for tenderness increased from 0.17 to 0.38 following the 
inclusion of genomic information in the model and applying a two-step genomic model. 
Using single step genomic approaches generated further improvements in prediction accuracies 
for all three traits. Across all traits, the slope of DYD on (G)EBV of the validation sires where 
the expectation of the slope was 0.5, improved with the inclusion of genomic information in the 



model and improvement further when a single step genomic approach was applied compared 
to a two-step approach indicating ssGBLUP could reduce potential biases.  
   
Table 2: Correlations between the (genomic) estimated breeding value and daughter yield 
deviations (DYD) and the slope of the DYD on the (G)EBV from three different 
approaches. 
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