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ABSTRACT
The persistently high prevalence of many cattle diseases necessitates consideration of other mitigation 
strategies, one of which could be animal breeding. Although low heritability, which is a general characteristic 
of many cattle health traits, is often cited as a reason why breeding strategies may not be fruitful, this is 
certainly not a correct deduction. Low heritability does not necessarily imply a lack in genetic variability, nor 
does it imply that the majority of the observed inter-animal variability is due to management. Annual genetic 
gain for any trait is a function of 1) the intensity of selection, 2) the accuracy of differentiating genetically 
divergent animals, 3) the extent of genetic variability present, and 4) the generation interval. Heritability 
impacts the accuracy of selection, but the impact of low heritability can be negated against by accessing more 
information; such information was traditionally phenotype-based, but more recently is being complemented 
with DNA information. Considerable exploitable genetic variability exists in most health-related traits in cattle. 
The high accuracy of selection achievable for health traits, coupled with the presence of large inter-animal 
genetic variability, can translate to rapid genetic gain. Therefore, breeding programmes should constitute a 
component of devised strategies to improve the cattle health.
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INTRODUCTION
The contribution of breeding programmes 
to changes in performance metrics in cattle 
populations is well acknowledged (Berry and others 
2014, Berry and others 2016, García-Ruiz and 
others 2016); change here implies either favourable 
or unfavourable change. Clearly rapid favourable 
genetic gain in milk production and composition 
in recent decades has occurred in many dairy 
cow populations (Berry 2018, García-Ruiz and 
others 2016); the contribution of many dairy cow 
breeding programmes to an erosion in dairy cow 
reproductive performance in the latter years of the 
last century has also been well documented (Lucy 
2001). Despite commentary that genetic selection 
for lowly heritable reproductive traits would not 
be successful, the global broadening of dairy and 
beef cow breeding goals has resulted in rapid 
genetic gain for reproductive performance in both 
dairy and beef cattle populations (Berry and others 
2014); in turn the genetic gain has translated 
into rapid observable on farm improvements in 
phenotypic performance in both dairy (Coleman 
and others 2009) and beef (McHugh and others 
2014) cattle. The low heritability of many health 
traits in cattle (Berry and others 2011a) sometimes 
leads to a (incorrect) conclusion that breeding for 
improved health will not be fruitful. The heritability 

statistic is, however, arguably one of the most 
misinterpreted in animal breeding. The objective of 
this review is to define what is meant by heritability 
and, in doing so, also clarify what it is not. The 
components contributing to genetic change in 
population performance are described using health 
traits in cattle for illustrative purposes. 

HERITABILITY DEFINITION
Heritability may be defined as:

•	 The proportion of inter-animal phenotypic 
variance attributable to inter-animal 
genetic differences. 

•	 The strength of the relationship between 
the true genetic merit of an individual for 
a trait and its observed performance (after 
adjustment for systematic environmental 
effects such as herd, animal age).

Heritability does not, however, depict the fraction 
of a phenotype which is caused by genetics. 
Two types of heritability exist, the narrow sense 
heritability (h2) and the broad sense heritability 
(H2). Generally, unless otherwise stated, it is the 
narrow sense heritability that is cited in animal 
genetic studies because this considers only the 
proportion of phenotypic variation which is directly 
transmitted from one generation to the next 
without cognisance of the mate of the animal. 
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Based on the first definition above, the heritability 
is the proportion of the phenotypic variability 
(i.e. the variation observed on-farm) attributed to 
genetic differences, and therefore heritability is a 
ratio trait which be expressed as a proportion or 
percentage ranging from zero to one:

where p is the proportion of animals with correctly 
identified sires. Given that parentage errors in Irish 
cattle range from 10% to 13% (Purfield and others 
2016), the true heritability of a trait is expected to 
be 23% to 32% greater than that estimated with the 
errors; for example, for a documented heritability 
estimate of 0.05 that has parentage errors of 13%, 
the true heritability estimate is likely 0.07.

Of particular relevance to animal health, and 
of concern to animal breeders, is the impact 
of misclassification of animals for health traits 
because of ‘noise’ in field data; such noise includes 
incomplete exposure, imperfect sensitivity 
and specificity of diagnostic tests, as well as 
heterogeneity of phenotype recording. Bishop and 
Woolliams (2010) documented that false-positive 
and false-negative results will suppress the estimate 
of the true heritability (Figure 1). As an example, 
Twomey and others (2016) reported an observed 
heritability of 0.013 and prevalence of 20% for 
liver damage caused by Fasciola hepatica in Irish 
cattle. The sensitivity and specificity of F. hepatica-
damaged liver diagnosis in that study was assumed 
to be 68% and 88%, respectively; however, if the 
sensitivity and specificity were both perfect, then 
the observed heritability and prevalence would 
be 0.055 and 14%, respectively. In addition, Ring 
and others (2018a) discussed the consequences 
of inconsistency in phenotype recording on the 
heritability estimates of hoof health traits. By way 
of example, Ring and others (2018a) randomly re-
dichotomised the binary trait of overgrown sole 
to reflect recording discrepancies likely to occur 
in field data, perhaps collected by producers; the 
result was a reduction in the heritability estimate 
for sole ulcers from 0.09 to 0.03 due to an increase 
in residual variance. 
3. Low heritability translates to slow genetic gain. 
Theoretical genetic gain in any given trait or index 

Figure 1. The true heritability when sensitivity or specificity is imperfect 
for disease traits with an observed heritability of 0.01 (solid line), 0.05 
(dotted line) and 0.10 (dashed line; Bishop and Woolliams 2010).

Heritability estimates not only vary by trait, but 
they also vary by population. The degree of genetic 
variance in a population (i.e. the numerator term 
of the heritability), is dependent on factors (Berry 
and others 2017) such as the frequency of the 
alternative DNA variants at a given location that 
affect the trait, the extent of segregation of the 
DNA variants, and the mode of gene action (e.g. do 
the variants act independently or is their effect a 
function of the variants in other genes). Some of 
these factors can be influenced by evolutionary 
forces such as migration, selection, inbreeding, 
assortative mating and genetic drift (Berry 2018). 

Heritability myths
1. Low heritability implies little genetic variance. 
Because heritability is, by definition, a ratio trait, 
no inference to the extent of genetic variance 
can be made from a heritability estimate. Using a 
heritability of 0.05 as an example, it can be clearly 
seen that the same heritability is achievable 
irrespective of the estimate of genetic variance:

Heritability (h2) =
Genetic variance

=
Genetic variance

Phenotypic variance Genetic variance + residual variance

Heritability = 0.05 =
0.05 units2

=
5 units2

=
500 units2

0.05 units2 + 0.95 units2 5 units2 + 95 units2 500 units2 + 9500 units2

2. Low heritability means most of the variation is 
due to management – for example a heritability 
of 0.05 is sometimes construed to imply that 5% of 
the variability is genetic and 95% of the variability 
is due to management effects. Phenotypic variance 
(i.e. variance observed on farm), which constitutes 
the denominator of the 
heritability equation, is the sum 
of the genetic variance and the 
residual variance. The residual 
variance, as the name suggests, 
is comprised of noise; this noise 
can include errors in the data, 
including pedigree data, and/or 
variability unexplained by the 
fitted statistical model. 

Based on heritability estimates 
derived using paternal sib 
correlations, Van Vleck (1970) 
documented that estimated 
heritability statistics were biased 
downwards by a fraction of p2 
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of traits can be calculated using the “breeder’s 
equation” first described by Rendel and Robertson 
(1950) as:

cattle from relatives has been complemented 
with genomic information using a process termed 
genomic selection (Meuwissen and others 2001). 
The number of animals required to achieve a given 
accuracy of breeding values based on traditional 
genetic evaluations, using just phenotypic 
information from progeny, for a selection of 
heritability estimates is in Figure 3. Assuming a 
heritability of 0.03, phenotypes on 127 progeny per 
parent would be required to achieve an accuracy of 
0.70; the number of progeny per parent required 
to achieve the same accuracy would be 37 and 10 
if the heritability was 0.10 or 0.35, respectively. 
Hence, the lower the heritability, the greater the 
number of progeny records required to achieve a 
given accuracy of selection. Figure 3 also illustrates 
the expected accuracy of genome-based estimated 
breeding values for traits differing in heritability 
when based on genomic information (Daetwyler 
and others 2008). Genome-based estimated 
breeding values, also known as genomic selection, 

Figure 2. The expected mean of a population of 
selected animals (in standard deviation units) 
as the proportion of animals selected changes, 
relative to the mean of a population with half 
(i.e. 50%) of animals selected. 

Figure 3. For trait heritability values of 0.35, 
0.20, 0.10, 0.05 and 0.03 (in order of descending 
darkness of lines), the a) number of progeny 
required to achieve a given accuracy of 
selection using traditional pedigree-based 
genetic evaluations and b) number of records of 
phenotyped and genotyped animals to achieve 
a given accuracy of genomic evaluations; the 
latter is based on 1000 effective chromosomal 
segments and 80% of the genetic variance 
accounted for by the genotyped markers.  

Genetic gain per year =

Selection intensity x accuracy of selection x genetic standard deviation

generation interval

Selection intensity represents the mean, in 
standard deviation units, of the selected parents 
of the next generation relative to the current 
generation. Figure 2 illustrates, using a different 
proportion of a population selected as parents of 
the next generation, how the expected mean of 
a selected population differs relative to the mean 
if half the population were selected. Clearly, the 
greater the selection intensity (i.e. the fewer 
elite animals selected to be parents), the greater 
the expected mean of the selected population 
(all else being equal) and thus the greater the 
expected genetic gain; moreover, the trajectory 
of the expected mean of the selected population 
increases at an increasing rate as the selection 
becomes more intense. 

Accuracy of selection depicts how closely the 
measure used to select the parents of the next 
generation reflects their true genetic merit. If 
selection is based on the observed phenotype of 
the animal alone, then the accuracy of selection 
is simply the square root of the heritability of the 
trait; therefore phenotypic selection can be very 
effective when heritability is high. Most selection 
schemes, however, exploit estimated breeding 
values of the candidate parents. The accuracy of 
these estimates of the breeding values is a function 
of the information available on relatives (including 
the animal itself) and the heritability of the trait; 
in the last decade, performance information in 
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are now routinely used in most cattle genetic 
evaluations. Again, the lower the heritability, the 
greater the number of phenotyped and genotyped 
animals (i.e. animals with DNA information) 
required to achieve a given level of accuracy. 
Phenotypes and genotypes on 8,333 animals would 
be required to achieve an accuracy of genomic 
predictions of 0.4 for a trait heritability of 0.03; this 
number reduces to 2,500 animals if the heritability 
is 0.10 and further to 714 if the heritability is 0.35. 
Nonetheless, high accuracy of selection, even 
for low heritability traits, irrespective of whether 
based on progeny phenotypic information or 
animal genomic information, is still certainly 
achievable and thus low heritability should not 
always be a constraint on genetic gain. Hence, to 
achieve genetic gain in health traits needs to a) be 
a belief that breeding programmes can deliver on 
improving animal health, and b) a willingness to 
make this happen which itself entails data recorded 
into a repository (linked with other information) 
and the sharing of these repositories (ideally into a 
centralised database).

Arguably the most important factor affecting 
genetic gain is the extent of genetic variability 
present. All else being equal, the greater the genetic 
variation, the greater theoretical rate of genetic 
gain. (Genetic) variation is often represented as the 
genetic standard deviation. Assuming a normally 
distributed trait, 16% of individuals are expected 
to be one standard deviation superior to the 

population mean.
The generation interval is the average age of the 

parents at the birth of their progeny who in turn 
become parents of the next generation. Prior to 
the introduction of genomic selection, the mean 
generation interval in dairy and beef cattle was 
6.03 to 6.71 years (McParland and others 2007). 
Cattle breeding schemes are rapidly evolving to 
maximise the exploitation of genomic selection and 
hence the generation interval in cattle is constantly 
reducing (Garcia-Ruiz and others 2016).

All in all, because selection intensity is largely at 
the discretion of the breeder, and a high accuracy 
of selection is usually achievable even for low 
heritability traits (assuming sufficient phenotypes 
exists), when coupled with the fact that genomic 
information on individual animals is available at 
a young age (thereby reducing the generation 
interval), it is the extent of genetic variability in 
health traits that is the main determinant affecting 
the rate of genetic gain in health. This conclusion, 
however, does not negate the importance of 
collating large datasets on health phenotypes from 
which to generate accurate estimates of genetic 
merit. 

GENETIC PARAMETERS FOR HEALTH 
TRAITS IN CATTLE AND EXPECTED 
GENETIC GAIN 	
Heritability estimates for a whole range of health 
traits in cattle are summarised in Figure 4. Mean 

Figure 4. Mean heritability estimates (marker) on the observed scale with minimum and maximum 
heritability estimates per study (represented by standard error bars) for a series of health traits in cattle; 
the number of studies/populations contributing to each estimate are in parenthesis after the trait name. 

References: Thompson 1984, Muggli-Cockett and others 1992, Poso and Mantysaari 1996, Pryce and others 1998, Van Dorp and others 1998, 
Kadarmideen and others 2000, Hansen and others 2002, Carlén and others 2004, Pan and others 2004, Zwald and others 2004 Abdel-Azim and 
others 2005, Snowder and others 2005, van der Waaij and others 2005, Snowder and others 2006, Heringstad and others 2008, Holtsmark and others 
2008, Budeli and others 2009, Coppieters and others 2009, Laursen and others 2009, Attalla and others 2010, Berry and others 2010, Brotherstone 
and others 2010, Heringstad 2010, Koets and others 2010, Schneider and others 2010, Berry and others 2013, Pritchard and others 2013, Koeck and 
others 2014, Richardson and others 2014, Carthy and others 2015, Jamrozik and others 2016, Twomey and others 2016, Biegelmeyer and others 
2017, May and others 2017, Ring and others 2018a, Ring and others 2018b, Twomey and others 2018.
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heritability estimates per trait varied from 0.004 for 
grass tetany to 0.14 for tuberculosis; half the traits 
had a mean heritability of ≤0.05. Considerable 
variability in heritability estimates for a given trait 
amongst populations was nonetheless evident. 
Based on a meta-analysis of up to 20 different 
Holstein-Friesian dairy cow populations, Berry 
and others (2014) reported a mean heritability 
estimate for traditional fertility traits of between 
0.021 (number of services) to 0.174 (the interval 
from calving to first heat) with 8 of the 12 traits 
evaluated having a heritability of <0.04; a similar 
conclusion existed for traditional fertility traits 
in other dairy breeds (Berry and others 2014). 
Nonetheless, despite the low heritability for these 
fertility traits, rapid genetic gain (following rapid 
deterioration) in reproductive performance in the 
Holstein-Friesian breed has been achieved (Berry 
and others 2014, Berry 2018). The rapid genetic 
gain in reproductive performance in most dairy cow 
populations has been attributable to the known 
large inter-animal genetic variability in reproductive 
performance (Berry and others 2014) coupled with 
a “can-do” attitude among stakeholders ensuring 
reproductive performance measures were 
recorded to overcome the low heritability and 
achieve high accuracy of selection and thus rapid 
genetic gain. The mean standard deviation for 
a range of health traits in cattle are presented in 
Figure 5 for studies that analysed the trait as a 
binary trait using linear models. Berry and others 
(2003) documented a genetic standard deviation 

Figure 5. Mean additive genetic standard deviation (marker) with 
minimum and maximum standard deviation estimate per study 
(represented by standard error bars) for a series of binary health 
traits in cattle; the number of studies/populations contributing to 
each estimate are in parenthesis after the trait name. 

References: Van Dorp and others 1998, Snowder and others 2005, Bermingham and others 
2009, Pritchard and others 2013, Richardson and others 2014, Carthy and others 2015, Jamrozik 
and others 2016, Twomey and others 2016, Ring and others 2018a, Twomey and others 2018.   

for the binary fertility trait of pregnancy rate to 
first service of 0.051 in dairy cows; half of the 
health traits in Figure 5 had an average genetic 
standard deviation greater than 0.051. Given 
the well-acknowledged improvement observed 
in reproductive performance from breeding 
programmes in dairy cattle (Berry and others 2014, 
Berry 2018), sufficient genetic variability clearly 
exists for most of the health traits implying that 
indeed rapid genetic gain is possible if high accuracy 
of selection (and intense selection) is achieved.

Challenges impacting successful genetic selection 
for improve health status
Accurate genetic evaluations are predicated on vast 
quantities of individual animal phenotypic data 
(Figure 3) and the necessity for data is particularly 
important for most health traits which tend to be, 
on average, lowly heritable (Figure 4). Genetic 
evaluations for health traits in dairy cattle have 
been underway for many decades in Scandinavia 
(Philipsson and Lindhé 2003) but this is owing to 
the imposed legislation requiring veterinarians to 
administer all animal treatments. These data are 
subsequently collated for use in genetic evaluations 
which, when coupled with the traditionally large 
progeny testing programme in Scandinavia, facilitate 
the achievement of high accuracy of selection; the 
outcome is the well-documented superior health 
performance of cows originating from Scandinavian 
breeding programmes (Heringstad and others 
2003). Veterinary practitioners still diagnose most 

diseases in most countries and 
capturing at least these data would 
provide useful information from 
which to generate accurate genetic 
evaluations. Moreover, the expected 
greater accuracy of diagnoses logged 
from veterinarians should contribute 
to lesser residual noise and thus 
higher trait heritability; the impact 
of the higher heritability is the 
requirement for fewer phenotypic 
records to achieve a high accuracy of 
selection (Figure 3).

Unless an animal is exposed to 
a disease, then it will be unable to 
express its genetic potential via its 
phenotype. Moreover, the virulence 
(and duration) of the pathogenic 
load could impact the expression of 
the inter-animal genetic variability 
in resistance to the disease under 
investigation. Hence, certainty on the 
exposure conditions of each animal 
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is critical to the precision of genetic 
evaluations; precision is somewhat 
different to accuracy with the latter 
simply being a function of the number of 
records in the evaluations and although 
improper deductions on the exposure 
conditions should cause a deflation 
in the heritability of the trait for the 
population as a whole, it will not impact 
the accuracy of genetic evaluations for 
an individual animal. Geneticists use 
careful data editing procedures prior to 
analyses as a strategy to maximise the 
probability that all animals eventually 
included in the genetic analyses have 
been exposed to the disease. Twomey 
and others (2016), for example, in 
their genetic analysis of liver damage 
caused by liver-fluke, undertook several 
different data editing approaches in 
an attempt to, as far as possible, only 
consider exposed individuals in their genetic 
analyses; this was based on the fact that the only 
animals considered were herd contemporaries of 
animals with observed liver damage.

Given the difficulty in collating vast quantities of 
health data in many countries, improving the trait 
heritability warrants some effort. Increasing the 
heritability through a reduction in random noise 
can be achieved through more precise definition of 
animal-level exposure, as alluded to previously, but 
also through improved consistency in phenotype 
definition and diagnosis; improved diagnostics here 
also includes improved sensitivity and sensitivity of 
laboratory tests as well as awareness and extension 
campaigns for producers on the (sub)clinical signs 
and differentiation of alternative aliments. The 
large-scale uptake of genotyping should help 
reduce the impact of parentage errors on deflating 
heritability estimates.

GENOMICS OF ANIMAL HEALTH AND 
HERITABILITY
Genomics is the study of the structure, function 
and intragenomic interactions within the genome 
(Berry and others 2011b). Many genome-based 
studies attempt to relate regions of the bovine 
genome with performance, including animal 
health (Meredith and others 2013, Richardson and 
others 2016). The justifications proposed for such 
studies often revolve around the use of discovered 
regions in breeding programmes under the guise of 
genomic selection (Meuwissen and others 2001). 
Dissecting the underlying genomic architecture 
affecting animal health, however, has far reaching 

uses over and above those for breeding purposes 
(Figure 6; Berry 2015). While many genome-based 
studies are based on a description of the dataset 
under investigation, it is the predictive ability 
of future performance, and more importantly 
the necessary data informing more accurate 
prescriptive ability which will undoubtedly be 
one of the main outcomes of genomic studies in 
animal health (Figure 7). Therefore, helping predict 
predisposition to a given disease but also provide 
a better understanding of the underlying biology 
should form a major outcome of such genomic 

studies. 
Prediction of predisposition to disease: The 
application of predicting (genetic) predisposition 
to disease is a rapidly growing discipline in human 
medicine (Vogenberg and others 2010). One of the 
best known examples is the role of mutations in the 
BRCA1 and BRCA2 genes in the likelihood of cancer 
development in humans (Narod 2002). Knowledge 
of genetic risk can trigger one or all of 

1.	 Enhanced screening, 
2.	 Prophylactic treatments, or 
3.	 Management or chemoprevention

The endless possibilities of predictive diagnostics 
are also true for animal health. Using mastitis as 
an example, cows with a known greater genetic 

Figure 6. Adaptation of the uses from known the causal DNA 
variants in animal health (breeding) programmes.

Figure 7. Proposed development of descriptive 
models, to those that are predictive and 
eventually prescriptive models.
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predisposition to udder infection could be 
subjected to enhanced screening by always drawing 
milk prior to milking with closer examination of the 
milk, possibly even through using a California milk 
test; in large herds, these cows could be managed 
as a separate group and milked last. As a means of 
prophylactic treatment, these animals could receive 
dry cow therapy, or at the very least, their estimate 
of genetic predisposition could be included as a 
factor in any model or system allocating cows to 
dry cow therapy. For managing the risk, the udders 
of the at-risk cows could, for example, be more 
thoroughly cleaned prior to milking. Furthermore, 
these at-risk cows could receive supplementary 
doses of, for example, Vitamin E or Selenium (Smith 
and others 1997). A more drastic strategy would be 
to cull from the herd the at-risk animals as heifers.

Nonetheless, the heritability for a given trait 
limits the maximum accuracy of phenotypic 
prediction achievable for any genomic test. One 
cannot simply explain more genetic variability than 
actually exists; in fact, properly executed genomic 
studies generally explain only a small proportion of 
the heritability of traits leading to the debate on 
the reasons for the “missing heritability” (Manolio 
and others 2009, Eichler and others 2010). Wray 
and others (2010) deterministically calculated the 
maximum accuracy of predicting a binary outcome 
(i.e. observed with or without mastitis) for traits 
differing in heritability and prevalence. The accuracy 
of prediction increases with heritability (Figure 8); 
the accuracy of prediction also improves as the 
prevalence deviates from 50% with the trend being 
stronger for higher heritability traits. Assuming a 
heritability of 0.03 for mastitis (Berry and others 
2013), the accuracy of differentiating animals with 
a high or low risk of mastitis assuming a prevalence 
of 20% would be expected to be 0.59 when all the 
genetic variance can be explained. Thus, even with 

genomic tools that explain all the available additive 
genetic variation, the accuracy of prediction 
of mastitis is relatively low; a value of 0.50 is 
equivalent to simply flipping a coin. If however, a 
trait like bovine tuberculosis was considered with 
a heritability of 0.14 (Figure 4; Bermingham and 
others 2009, Brotherstone and others 2010) and an 
animal level prevalence of 10% (Bermingham and 
others 2009), then the accuracy is 0.70 if all the 
genetic variance could be explained or 0.65 if half 
the genetic variance could be explained. Hence, the 
usefulness of genetics as an aid in individual animal 
management is trait dependent.

Better understanding of the underlying biology 
The general foundation to addressing any disease, 
irrespective of species, is a thorough understanding 
of the disease itself and the mechanisms by 
which the host and pathogen interact. Animal 
defences against disease can be broadly classified 
into innate immunity and adaptive immunity. 
Likewise, genetic mutations governing the animal’s 
response to a pathogen may be stratified into: a) 
controlling susceptibility or resistance to acquiring 
the infection (i.e. the innate immunity), b) dictating 
the specificity of the adaptive immune response, 
or c) the extent of the specific immune response 
(i.e. cell mediated resulting in inflammation or the 
generation of humoral antibodies). 

Knowing the mechanisms governing resistance 
or resilience to disease is invaluable for the 
development of phenotyping strategies, the 
advancement of vaccines/treatments, as well 
as informing herd-management decisions. For 
example, if genes associated within the innate 
immune system were associated with inter-animal 
variability in infection rate to a pathogen, then it is 
likely that barriers to penetration such as the skin, 
hair, and mucus are important. This could provide 

knowledge on the infection mechanism of 
the pathogen possibly leading to strategies 
to augment the innate immune system for 
this particular pathogen. Moreover, up-
regulation of such genes and the production 
of factors like acute-phase proteins or 
cytokines could lead to the development 
of tests that can be routinely undertaken 
(e.g. through milk samples in lactating 
dairy cows) that alert the producer to 
an imminent attack and trigger remedial 
action, especially for susceptible animals; 
the same is true for the products of 
adaptive immune responses. Furthermore, 
understanding the biological mechanisms 
underpinning animal health status could 

Figure 8. Area under the cure for binary (health) traits 
differing in heritability and prevalence.
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facilitate more appropriate statistical modelling of 
the phenotype or editing of the dataset, thereby 
helping reduce the residual variation or indeed 
identify novel phenotypes for genetic selection 
where data capture may be easier. Detection of 
gene expression at an individual animal level, 
either through the detection of the RNA or the 
translated protein, could also identify infection 
in progress, possibly still at the subclinical stage; 
this in turn could trigger the appropriate remedial 
action which may not necessarily always be an 
antibiotic for bacterial infection but could include 
treatments like non-steroidal anti-inflammatory or 
multi-vitamins. 

Deep phenotyping of animals genetically 
divergent for resistance to certain diseases can 
also help inform experimental study design to 
elucidate the underlying mechanisms governing 
inter-animal differences in infection rates. More 
accurate genetic differentiation could be possible 
with the use of animal-level genomic data trained 
to detect differences in animal-level resistance. 
Such a strategy of thorough examination of animals 
genetically divergent for a given trait as a tool 
to understand the underlying biology has been 
successfully implemented for understanding the 
biological mechanisms conferring advantages in 
reproductive performance in dairy cows (Moore 
and others 2014). The same can be undertaken 
for health traits where the biological mechanisms 
governing animal response to infection is not fully 
understood.

Augmenting the accuracy of identifying genetically 
elite animals 
Traditional progeny testing schemes were based 
on evaluating the genetic merit (i.e. DNA-merit) 
of candidate sires of the next generation via the 
measurement of progeny performance. This 
was undertaken using sophisticated statistical 
methodology (Henderson 1950) exploiting the 
knowledge that each progeny receives half its DNA 
from its sire. Given the long generation in cattle 
(McParland and others 2007), annual genetic gain 
was not excessively rapid and receiving an accurate 
genetic evaluation for a bull was both costly and 
time consuming. Such a demand on resources also 
therefore limited the number of candidate sires 
that could be tested annually. Pioneering work by 
Meuwissen and others (2001) proposed genome-
wide enabled selection (abbreviated to genomic 
selection) as a tool to improve the accuracy of 
selection. Genomic selection is based on the 
principle that the effects of many thousands of 
pieces of DNA could be estimated simultaneously, 

irrespective of the traditional statistical significance 
of these associations. Once estimated, the DNA 
effects could be transferred onto the genotypes of 
candidate bulls and an accurate estimate of genetic 
merit generated. The theory of genomic selection 
was made possible with the commercial availability 
of low cost platforms that could generate thousands 
of genotypes per animal. 

Despite the potential usefulness of detected 
causal DNA variants, genome wide association 
studies in cattle have remained largely unsuccessful 
and certainly not in line with the initial promises. 
There are multiple possible reasons for these 
failures, not least the quantity of data available for 
use in these studies; quantity of data here implies 
the number of DNA variants evaluated but also 
the number of experimental units (e.g. animals). 
Undertaking successful genome wide association 
studies are particularly difficult for health traits 
in cattle given the impact of heritability on the 
associated statistical power (Shin and Llee 2015) 
with a low heritability requiring more phenotypes 
to achieve the same statistical power as a higher 
heritability trait with fewer phenotypes. The ability 
to collate phenotypic data is difficult for health 
traits but the dilemma is exacerbated for genome 
wide association studies by their generally lower 
heritability (Figure 4). 

With the exception of some monogenic 
phenotypes (i.e. controlled by a single gene) such 
as complex vertebral malformation (CVM; Thomsen 
and others 2006), bovine leukocyte adhesion 
deficiency (BLAD; Shuster and others 1992) and 
deficiency of uridine monophosphate synthase 
(DUMPS; Robinson and others 1984) in cattle, most 
traits are likely to be polygenic in nature. Animal 
breeders conform to the infinitesimal model which 
suggests that there are a very large (i.e. infinite) 
number of DNA variants each having a very small 
(i.e. infinite) effect on the phenotype. Assuming 
the infinitesimal model is true, then it would 
be extremely difficult to identify DNA variants 
causing effects, and even if they were found, their 
impact individually on the accuracy of (genomic) 
predictions is expected to be negligible. While 
the hypothesis of an infinitesimal model is the 
foundation to quantitative genetics, the impression 
that all underlying DNA variants each have an 
infinitely small effect is certainly not true. A clear 
example is the effect of the K232A polymorphism 
in DGAT1 gene (Grisart and others 2002) on milk 
yield and composition; using a population of 
848 Holstein-Friesian bulls with milk production 
phenotypes based on daughter performance in 
Irish dairy herds, Berry and others (2010) reported 
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an effect of 77kg milk yield, 4.22kg fat yield and 
0.99kg protein yield for just one copy of the K232A 
variant. Hence, some genes do harbour mutations 
with a large effect although such large effects are 
likely to be the exception than the norm. 

CONCLUSIONS
The low heritability of many health traits in cattle 
should not be a reason for slow genetic gain 
but instead used to promote more widespread 
recording of such phenotypes in the pursuit 
of high accuracy of selection. The existence of 
ample, exploitable genetic variability in health 
traits indicates that once a high accuracy of 
selection is achieved, then rapid genetic gain, and 
thus phenotypic gain, is indeed possible. Hence, 
breeding programmes must constitute a major 
component of a health plan either nationally or 
within herd as a complementary strategy to on-
going disease prevention programmes. Part of such 
a programme must include due recognition of the 
necessity to collate health-related phenotypes into 
a central repository for use in genetic analyses; 
many of these data are already routinely recorded 
somewhere. The potential of cattle breeding 
programmes to improve dairy cow reproductive 
performance is well established; the time has now 
come to turn the attention of breeding programmes 
and the generated critical mass and expertise to 
improve animal health status.
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