

#### **IRISH CATTLE BREEDING FEDERATION**

## Inbreeding Trends in Pedigree Beef Cattle



#### Clodagh Ryan





Department of Agriculture, Food and the Marine An Roinn Talmhaíochta, Bia agus Mara

# Inbreeding

#### What is it?

 Inbreeding is defined as the probability that two alleles are identical by descent and occurs when related individuals are mated to each other

### Why is it a problem?

- Decline in performance of the resulting progeny
  - Inbreeding Depression

#### Traits affected:

- Post weaning gain
- Skeletal and Muscle traits
- Loin development
- Fertility traits
- Embryonic mortality
- Genetic defects



# Inbreeding Level (F)

- Measurement of degree of inbreeding
- **6.25%** inbreeding is widely viewed as the maximum level acceptable for an individual
  - What does 6.25% mean?

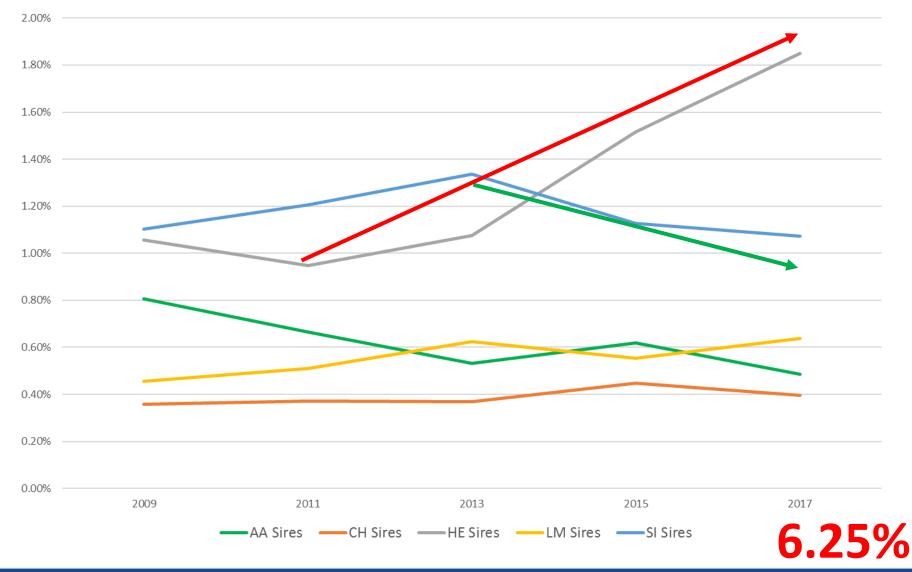


# Inbreeding Coefficients for Various Matings

| Relationship                                                      | Inbreeding<br>Coefficient* |  |  |  |
|-------------------------------------------------------------------|----------------------------|--|--|--|
| Female mated to its own sire                                      | 25%                        |  |  |  |
| Full Sibling mating (parents have common sire AND dam)            | 25%                        |  |  |  |
| Half Sibling mating (parents have common sire <b>OR</b> dam)      | 12.5%                      |  |  |  |
| Parents have a common grandparent                                 | 6.25%                      |  |  |  |
| Parents have a common great-grandparent                           | 3.125%                     |  |  |  |
| *minimum value; will be higher if ancestors are themselves inbred |                            |  |  |  |

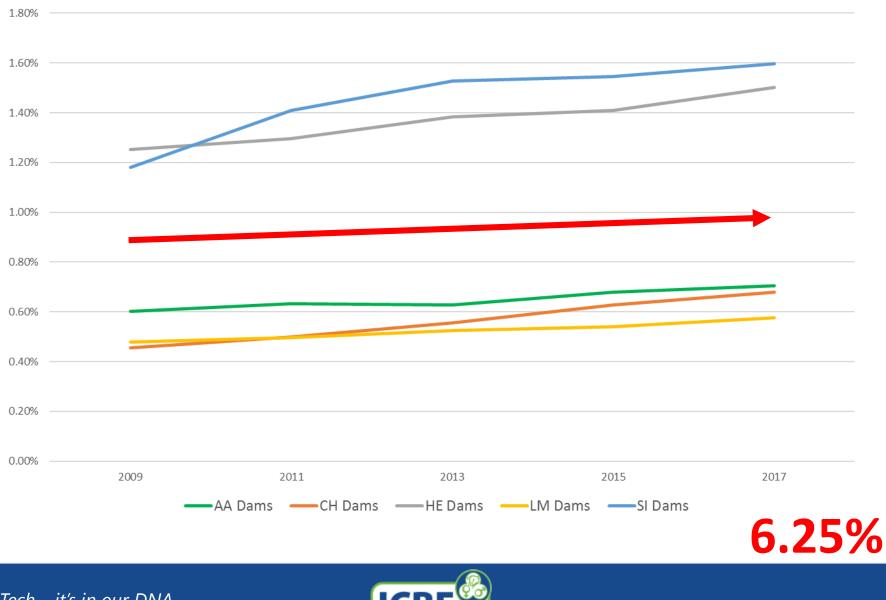


## **Inbreeding Level**


| 6.50%  |      |      |       |              |                |      |
|--------|------|------|-------|--------------|----------------|------|
| 6.00%  |      |      |       |              |                |      |
| 5.50%  |      |      |       |              |                | T    |
| 5.00%  |      |      |       |              |                |      |
|        |      |      |       |              |                |      |
| 4.30%  |      |      |       |              |                |      |
| 4.00%  |      |      |       |              |                | -    |
| 3.50%  |      |      |       |              |                |      |
| 3.00%  |      |      |       |              |                |      |
| 2 50%  |      |      |       |              |                |      |
| 2.5070 |      |      |       |              |                | •    |
| 2.00%  |      |      |       |              |                |      |
| 1.50%  |      |      |       |              |                |      |
| 1.00%  |      |      |       |              |                |      |
|        |      |      |       |              |                |      |
| 0.50%  |      |      |       |              |                |      |
| 0.00%  | 2000 |      | 2011  | 2012         | 2015           | 2017 |
|        | 2009 |      | 2011  |              |                | 2017 |
|        |      | ——AA | CH HE | LM SI Max Ac | ceptable Level |      |

AgTech – it's in our DNA




\*Average level of inbreeding in pedigree calves born in a given year

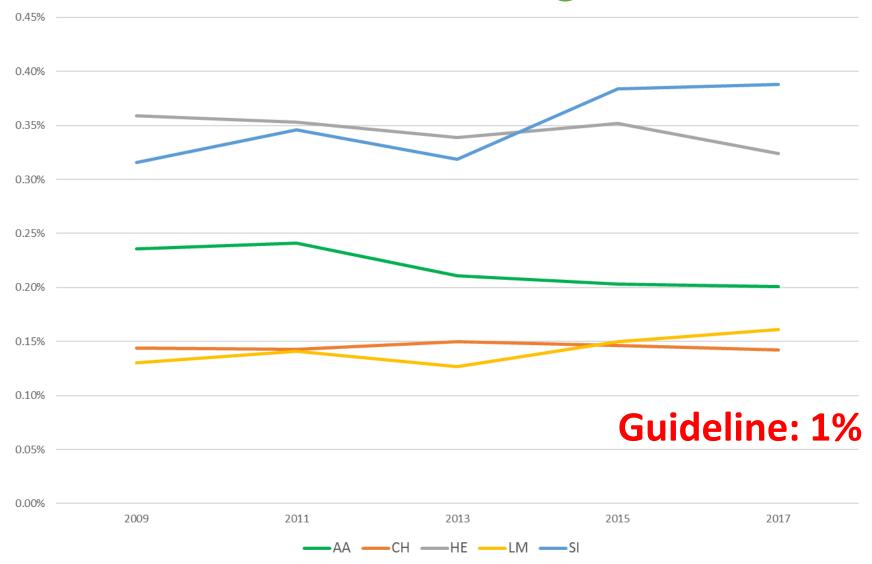
### **Average Sire Inbreeding Level**





### **Average Dam Inbreeding Level**




AgTech – it's in our DNA

# Rate of Inbreeding (ΔF)

- •Expresses the increase in average inbreeding level (F) from one
- generation to the next
- •The maximum rate of inbreeding (ΔF) accepted is 1%
- •Guideline set by the Food and Agriculture Organisation of the United
- Nations (FAO)
- •Above 1% effective number of animals in the population falls below 50
  - > 50 required to maintain levels of *genetic diversity*



### Rate of Inbreeding (ΔF)





## **Contribution vs Relationship**

#### Marginal Contribution

- Not necessarily the bulls with the largest number of progeny
- How many times they appear in the pedigrees of the reference population

#### •Relationship to Population

- How related a bull is to the reference population
- If a bull has relationship of 3% to the reference population
  - Inbreeding percentage of a mating between the bull and the average dam

results in a progeny with an inbreeding level (F) of 1.5%

Reference population is all pedigree females, still alive, older than one year and born after the year 2000

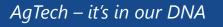


### **Relationship to Population**

| Breed | Al Code | Name                     | Relatedness |
|-------|---------|--------------------------|-------------|
| ΑΑ    | BJP     | BOHEY JASPER             | 4.87%       |
|       | SUB     | SUNSET ACRES BANG        | 4.35%       |
|       | CYI     | CONEYISLAND LEGEND       | 4.24%       |
|       | CF52    | DOONALLY NEW             | 7.26%       |
| СН    | PTE     | PIRATE                   | 5.89%       |
|       | KIB     | LIMKILN BOSCO            | 5.48%       |
|       | BHG     | BISHOPHILL GENERAL       | 8.72%       |
| HE    | SAD     | STANDARD LAD 93J IMP CAN | 7.68%       |
|       | F179    | GAGEBORO EUGENIC         | 6.48%       |
|       | МВР     | MILBROOK DARTANGAN ET    | 3.58%       |
| LM    | КЈВ     | BROOKLANDS F0959         | 3.42%       |
|       | NEU     | NEWTOWN BUNTY 1 (ET)     | 3.40%       |
|       | НСС     | HILLCREST CHAMPION       | 6.62%       |
| SI    | CQA     | CURAHEEN VIO (ET)        | 6.15%       |
|       | TSO     | CURAHEEN TYSON (ET)      | 5.78%       |

11

## Marginal Contribution to Population


| Breed | Al Code | Name                        | Marginal<br>Contribution |    |
|-------|---------|-----------------------------|--------------------------|----|
| ΑΑ    | SUB     | SUNSET ACRES BANG           | 4.42%                    |    |
|       | F195    | TIVANAGH BARON              | 3.14%                    |    |
|       | LWF     | LAWSONS FORD BAGATELLE Z094 | 3.05%                    |    |
| СН    | CF52    | DOONALLY NEW                | 6.29%                    |    |
|       | PTE     | PIRATE                      | 4.26%                    |    |
|       | IDU     | INDURAIN                    | 3.62%                    |    |
| HE    | SAD     | STANDARD LAD 93J IMP CAN    | 7.66%                    |    |
|       | СКVХ    | CH 3223 VISA ET 57X         | 6.15%                    |    |
|       | CUV     | CHURCHILL STORM V583        | 5.51%                    |    |
| LM    | MUC     | MAS DU CLO                  | 4.15%                    |    |
|       | SYP     | SYMPA                       | 3.79% <b>10.</b>         | 6% |
|       | DAU     | DAUPHIN                     | 2.66%                    |    |
| SI    | AS26    | SIEGFRIED                   | 4.15%                    |    |
|       | GHS     | GRETNA HOUSE SUPERSONIC     | 3.78%                    |    |
|       | REV     | RACEVIEW KING               | 2.65%                    | 12 |

## **Genomic Inbreeding**

•Measures the relationship between two animals by assessing the level of

homozygosity in their genes

- More accurate measure of inbreeding
- To calculate, the population needs to be genotyped
- •On average progeny receive 50% of their DNA from each parent.
- •Full siblings may share more or less than 50% of their genetics (average)
- •Identify the percentage of genes sibling animals have in **common**
- •Identifies animals that share the same genes, not related through pedigree





# Genomic Inbreeding

•Critical information when creating breeding strategies

- Avoid the mating of animals that are carriers for undesirable traits
- Identify animals with overlap in the pedigree but have no genes in common
  - Increases the number of potential sires for planned matings
- •Through genotyping, more animals are being parentage verified
  - Identify incorrect sires and correct them
  - Fewer accidental cases of inbreeding
- Population MUST be genotyped



## Conclusion

• Inbreeding cannot be completely avoided in small

#### populations

> Trace back far enough - all animals are related

- Positive trends some breeds need to exercise caution
- Opportunity to identify outcross bulls
  - Based off relatedness/contribution
- Going forward Genomic Inbreeding





#### **Our Farmer & Government Representation**



## **Acknowledging Our Members**