
Genetic Improvement in the Irish Dairy and Suckler Beef Herds: Latest developments

Ross Evans (ICBF)

RDS 2nd December 2008

What's new in breeding?

- Dairy: Genomic Selection (+ beef)
- Beef: Advent of Suckler Beef Eurostar indexes
 - AWRBS: increased levels of data for existing traits, new traits e.g. Docility
 - Possibility of new carcass traits using digital images

Current Approach to genetic improvement

- Increase profitability of farming by making genetic progress in traits of economic importance
- Based on recording information (phenotypes) of animals on farm, marts, factories etc...
 - e.g., fat & protein, fertility, carcass yield and quality, calving ease
- Quantitative approach (statistical methodology) – does not use DNA to estimate genetic merit/ don't know what genes contribute to superior animals

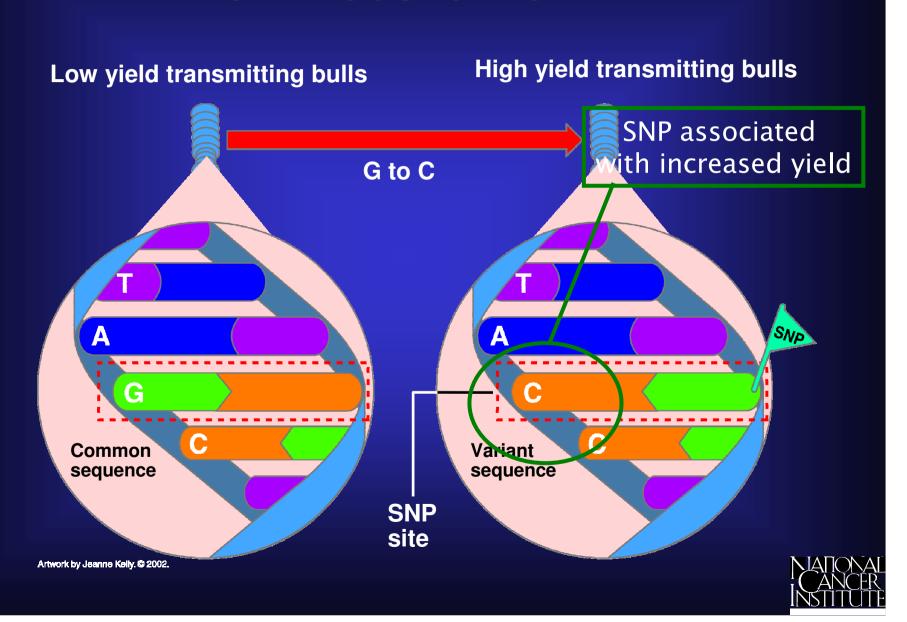
What is genomics?

- All living organisms store genetic instructions in their cells which help determine how they grow and function: DNA
- Compilation of DNA is called the genome

The Genome Contains Genes Milk Unique DNA sequence F&P synthesis Fertility etc+ **Gene 1 Coding region Protein 1 Noncoding region Protein 2 Gene 2 Coding region Noncoding region**

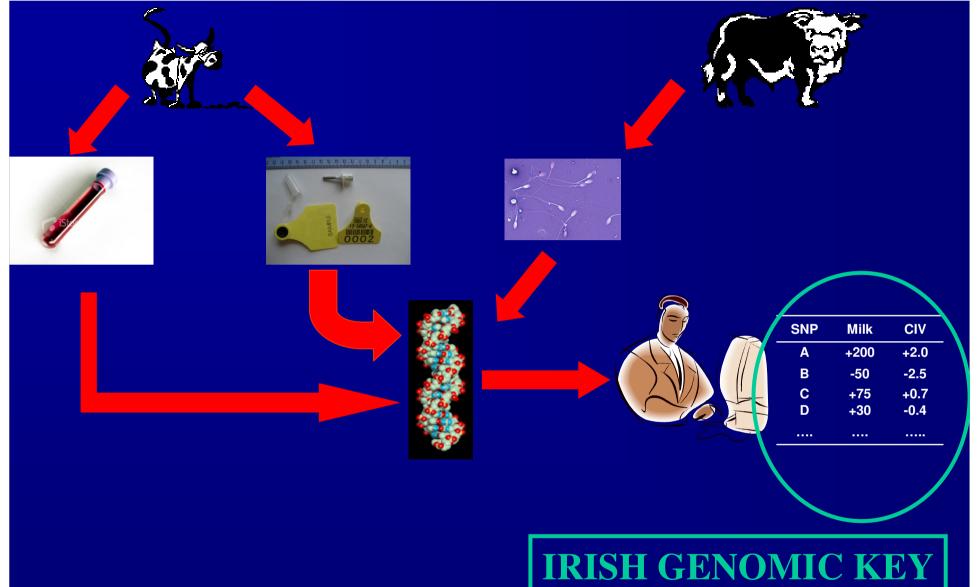
Why the interest in Genomics?

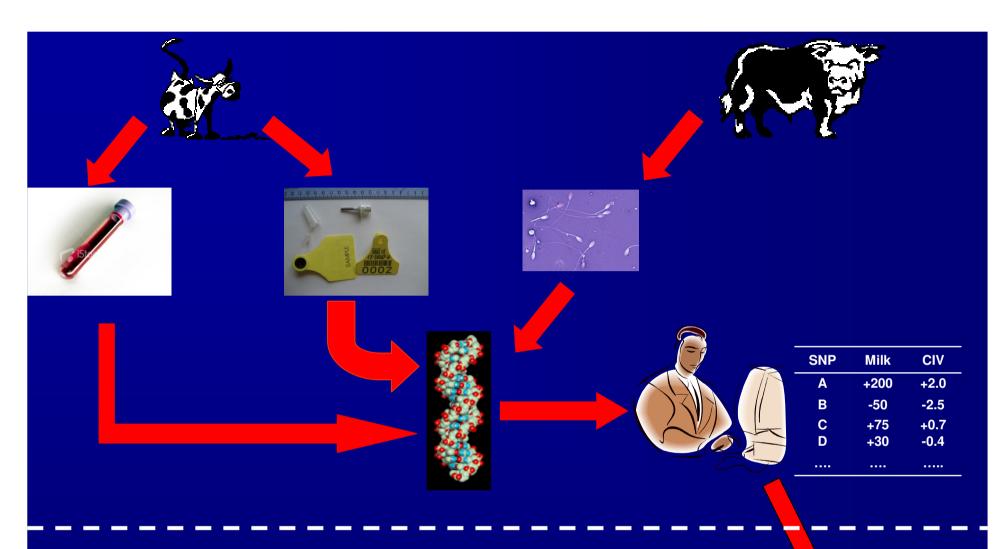
Example Bulls – 2 full brothers.


<u>Bull</u>	Addison	Slogan	Difference			
EBI	€26 (97%)	€75 (98%)	-€49			
Milk	€74 (99%)	€32 (99%)	+€42			
Fertility	€-77(95%)	€43 (97%)	-€120			
Milk kg	748 (99%)	57 (99%)	+691			
F+P	27.5(99%)	10 (99%)	+17.5			
CI	4.7 (95%)	-2.1(97%)	+6.8			

- How could 2 full brothers be so different?
- Need to progeny test bulls to determine value
- Could genomics have told us earlier?

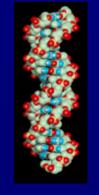
Genomic Selection - How?

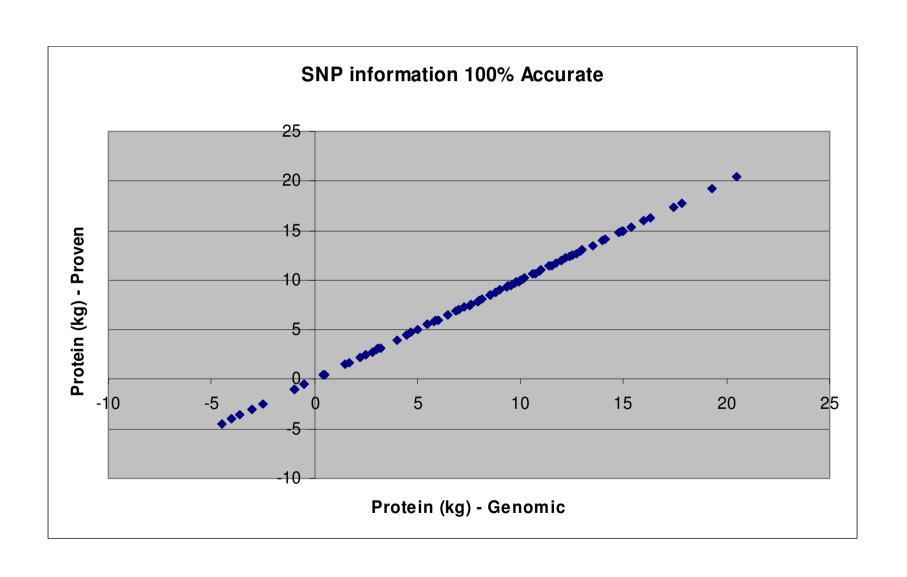

- The bovine genome.
 - 30 chromosomes & 3 billion pieces of DNA
 - 30,000 genes controlling all functions
 - We do not know many of these genes
- <u>Single Mucleotide Polymorphism's are a</u> type of variation
 - These are known markers (sign-post). Many genes associated with this sign-post.
 - We do know the location of all SNP but not function
- 54,000 pieces of DNA information available on a chip (SNP chip)

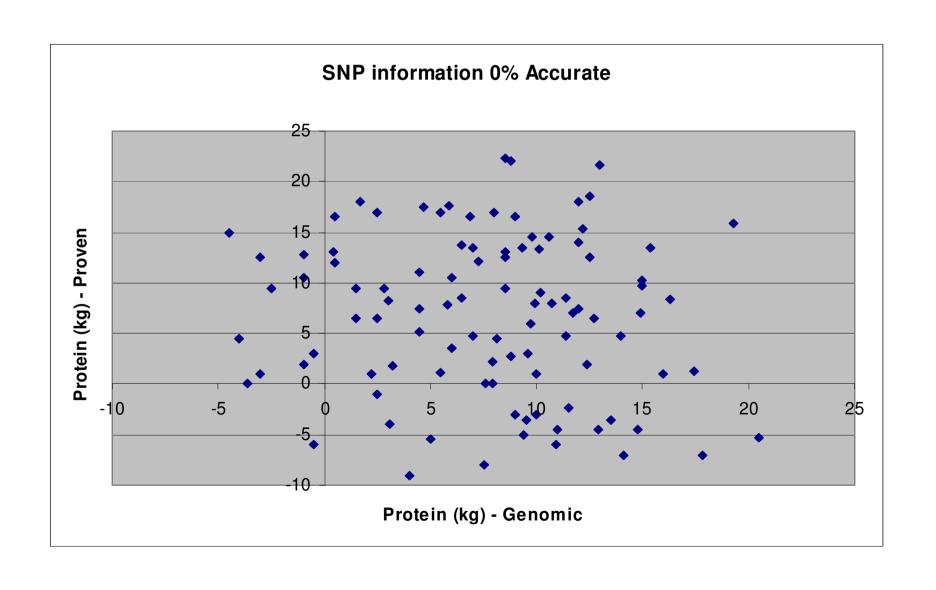

How Does it Work?

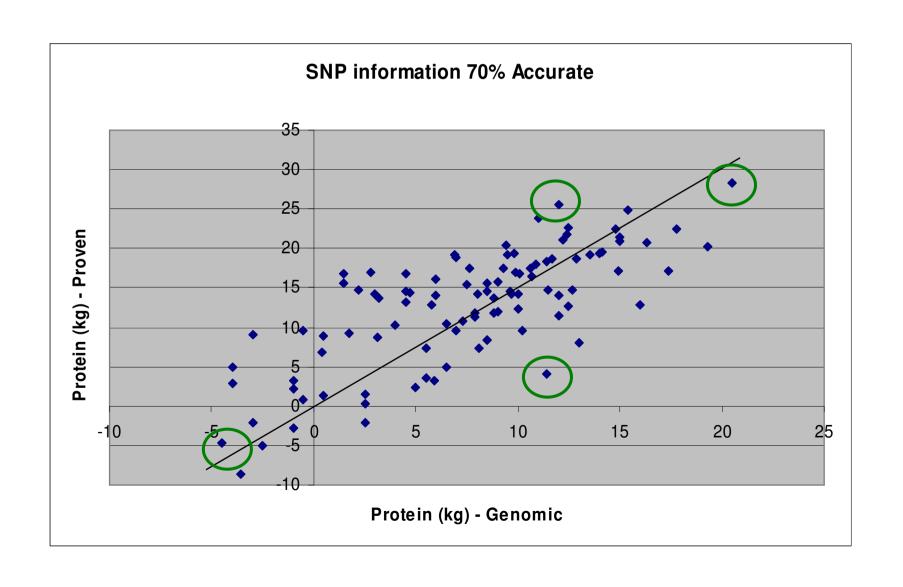
How does it work?

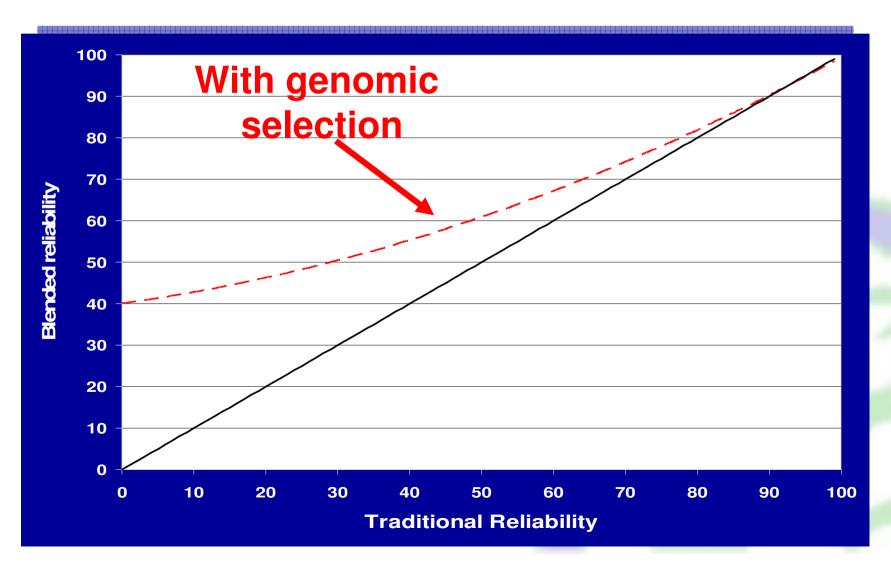
- Estimate what effect each SNP has on each of the traits in the EBI (Genomic Key)
- · To do this we need a 'training population'
- A training population is a group of proven bulls
 - With reliably proven traits and EBI
 - Genotypes (54k SNP chips)
- Potential to use cows also








SNP Info - Perfect Prediction


SNP Info - Useless

SNP Info - Expected

Effect on Reliability

Cost

- Current cost is about €300/animal
- May be able to develop a smaller SNP chip based on most relevant SNP?
- Used to screen cows (bull dams) and young animals - lower cost?

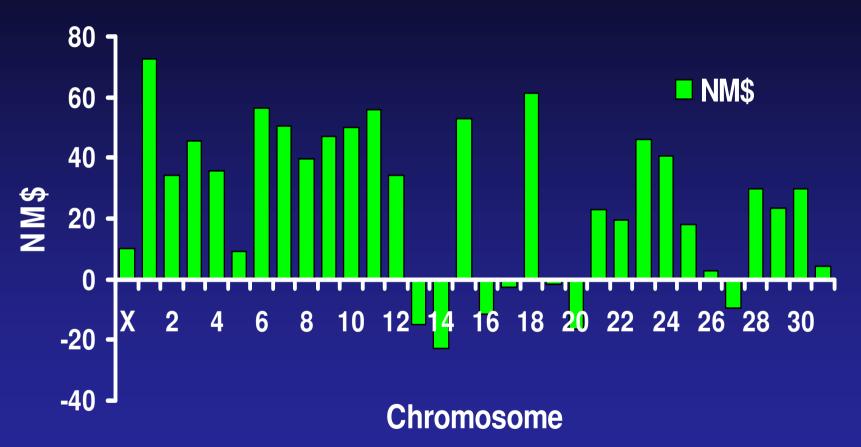
Where is the Irish research work?

- Goal of having GS data incorporated into National EBI's
 - Parent Average + Genomics + Foreign
 Data + Performance in Ireland
 - Integrated research: Irish training population (now ~1000 AI sires) + data from other countries (LIC, CRV.....?)
 - We want to be able to give Irish Farmers EBIs for all imported bulls

Impact at level of breeder

- Some breeders: will be conservative, continue to use traditionally proven bulls
- Higher risk (but less than before) for those using teams of genomic tested young bulls but faster genetic gain
- · Ability to more rapidly breed cows to meet changing requirements within the industry
- Increased reliability on heifers and cows, more accurate identification of elite females
- More careful analysis of inbreeding

Impact at level of ICBF


- Creates uncertainty for role of INTERBULL unless co-operation and sharing of genomic information
- Consortiums at present: USA & Canada, Dutch, New Zealand
- · Ireland unlikely to be large enough to operate alone, co-operation needed
- Ideally ICBF in a position to provide genomically enhanced breeding values for bulls from all countries on one scale: uncertainty how this will materialize

Summary

- Genomics has much to offer Irish farmers and dairy industry.
- Progress in traits traditionally hard to measure e.g. fertility, mastitis resistance
- New technology....but there will be some teething problems.
- Important to note that recording of phenotypic information is still vital: training population reest
- Not the "silver bullet"....an extra tool on which to make better breeding decisions.
- Working towards having GS for young bulls in Spring 2009.
- Wider application Spring 2009+

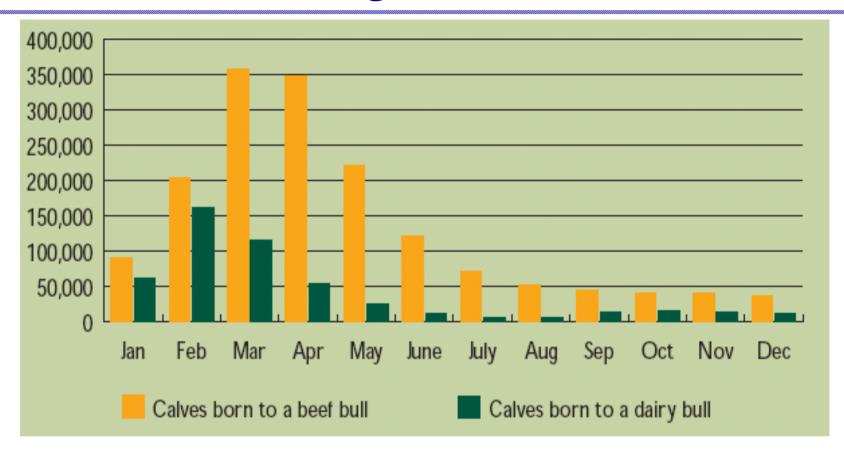
Net Merit by Chromosome for O Man

Top bull for Net Merit

Genomic Prediction very close to actual Net Merit

Developments in Suckler Beef Breeding

Challenges: Beef viewpoint


- Severe lack of sire ancestry recording to compliment quality phenotypic data
- Very low level of Al usage:
 - Affects genetic connections across herds
- Low farm incomes
 - Lack of interest in breeding
- Ageing farmer profile
 - Challenges for technology transfer
- Disease status of the national herd?
 - Lack of a concerted animal health program

Profile of Breed Combinations

Dam								Breed o	f Siro							
Breed	Charolais	Hol/Fries	Limousin	Angus	Hereford	Simment				Blonde	Saler	Rotbunt	Jersev	MRI	Other	Total
Charolais	168,419	556	52,559	9,711	4,651	11,170		117	1,245				3	22	561	259,106
Hol/Fries	39,698	487,285	92,520		131,275	38,874	41,959	12,656	2,851	1,744	1,577	4,455	4,135		4,211	1,013,305
Limousine	90,048	1,052	120,731	12,487	5,357	11,618		126	1,610	1,701	1,304	-	7	35	663	259,596
Angus	52,017	1,371	31,193	28,814	5,129	6,742	5,914	105	1,473	685	834	27	12	27	573	134,916
Hereford	62,654	1,534	40,474	10,428	27,400	12,246	5,949	133	1,464	965	656	22	9	19	446	164,399
Simmental	67,216	1,522	40,954	7,923	5,309	32,844	7,326	306	856	1,114	818	33	5	36	459	166,721
BBlue	20,460	848	17,111	4,314	1,890	2,958	7,349	76	478	621	317	23	11	10	235	56,701
Montbel	1,736	3,805	2,615	3,576	2,002	1,061	1,181	6,110	124	97	76	197	85	32	283	22,980
Shorthorn	13,597	538	8,754	2,844	1,675	1,992	1,373	59	7,207	219	386	20	17	10	189	38,880
Blonde	1,472	28	1,550	311	128	238	494	3	17	1,793	69	1	0	2	47	6,153
Saler	2,385	10	1,122	275	111	194	193	2	57	24	1,952	0	0	1	45	6,371
Rotbunte	115	1,212	248	939	451	78	117	108	47	36	14	1,488	110	14	58	5,035
Jersey	116	1,177	135	351	167	26	101	41	26	8	3	18	1,328	7	54	3,558
MRI	353	917	560	415	521	186	212	252	93	21	22	145	15	1,095	101	4,908
Other	802	811	839	1,229	324	253	249	119	77	34	58	66	94	9	2,472	7,436
Total	521,088	502,666	411,365	232,525	186,390	120,480	93,051	20,213	17,625	10,218	9,209	6,531	5,831	2,476	10,397	2,150,065
percent	24.2	23.4	19.1	10.8	8.7	5.6	4.3	0.9	0.8	0.5	0.4	0.3	0.3	0.1	0.5	100.0

- Suckler Beef Herd combinations in Grey
- Dairy herd combinations in white, Purebred births in yellow
- Large use of Beef Sires on the dairy herd
- Large level of crossbreeding in the Suckler herd

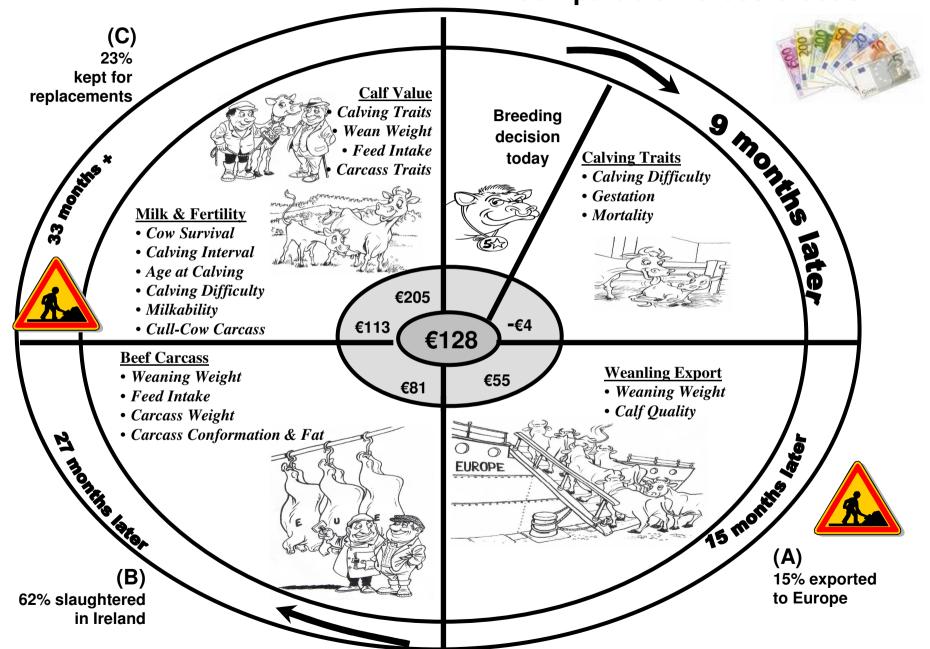
Calving Patterns

- Seasonal aspect to calving
- High usage of natural service beef sires in dairy herds at end of breeding season

Profile of Beef Calving herds

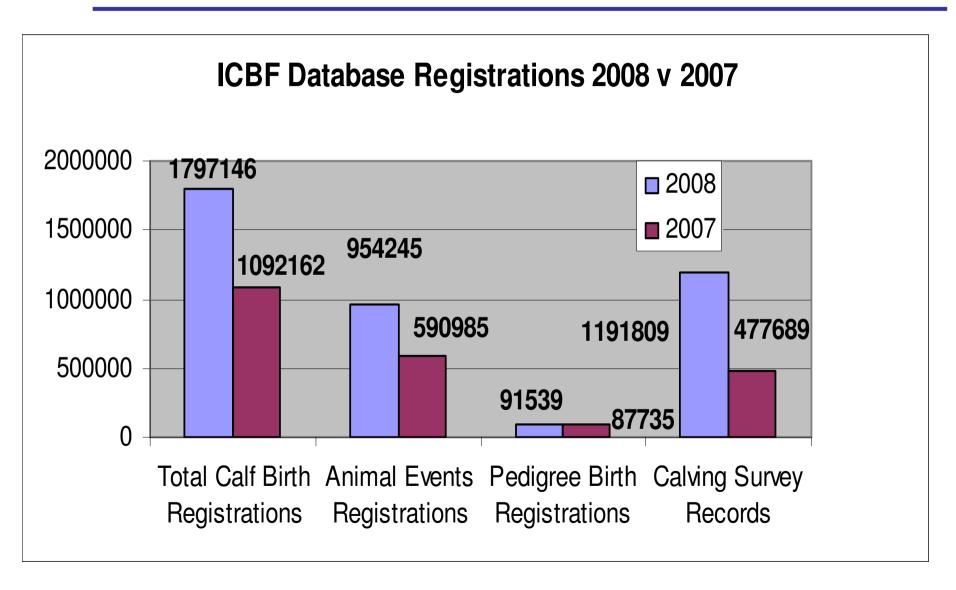
									THE SHAPE	UTOSE/AT
Type of Calving herd on ICBF database	Count of herds	Count of cows calved		no. of cows e of herd	Count of calving herds in various categories of herd size (total beef cows only)					
			pedigree	crossbred	<u><5</u>	<u>5 to 9</u>	10 to 24	25 to 49	<u>50 to 99</u>	<u>>100</u>
Crossbred beef cows only	40,482	503,270	0	12	10,786	10,328	14,439	4,238	651	40
Pedigree beef & crossbred beef cows	5,905	126,512	4	17	385	1,036	2,704	1,375	382	23
Pedigree beef, crossbred beef & dairy cows	967	17,712	4	14	135	227	377	168	52	8
Pedigree beef cows only	702	5,028	7	0	366	171	135	29	1	0
Pedigree beef & dairy cows	214	1,061	5	0	146	38	24	5	1	0

- Pedigree herd size is small but substantial linkage with commercial herds
- ~30% of herd replacements in commercial herds sourced from dairy herds


Profile of Fattening beef herds

Type of fattener herd on ICBF	Count of herds	Count of animals	Averages no. of animals per type of herd			Count of fattening herds in various categories of herd size					
database			Dairy	Beef	Dairy x Beef	<u><25</u>	<u>25 to 49</u>	<u>50 to 99</u>	100 to 499	<u>>500</u>	
beef animals only	11,598	57,919	0	5	0	11,303	241	46	8	0	
beef, dairy & 1st cross dairy-beef animals	7,257	273,193	13	12	13	3,574	2,100	1,169	402	12	
dairy & 1st cross dairy-beef	6,384	120,927	12	0	7	4,792	1,236	331	25	0	
beef & 1st cross dairy-beef	5,250	89,065	0	14	3	4,207	706	264	73	0	
dairy animals only	2,937	26,562	9	0	0	2,700	192	40	5	0	
1st cross dairy- beef	1,216	2,855	0	0	2	1,215	1	0	0	0	
beef & dairy animals	959	10,223	6	4	0	874	74	10	1	0	

Suckler Beef Index: SBV


Comparable Across breeds

Suckler Welfare Scheme

- Ability to transform the level of information available for genetic improvement of beef industry
- <u>2008</u> Calving information ~ 600,000 extra calvings
 - <u>2008/2009</u> ~ weaning weight, calf quality, docility (400,000)
 - <u>2009/2010</u> ~ Carcass information, fertility information on replacements
 - <u>2011</u> + ~ Maternal traits

Levels of data on ICBF database

Breed of	
sire	count
СН	168,493
LM	126,139
AA	26,864
SI	26,143
BB	19,490
HE	11,234
SH	4,544
SA	4,481
BA	4,050
AU	1,449
PT	713
PI	586
GA	123
MA	75
HI	67
RM	47
SP	26
AN	13
IM	11
DX	7
GS	5
SD	5 2 1
LH	1
VO	1

Total: 398,241

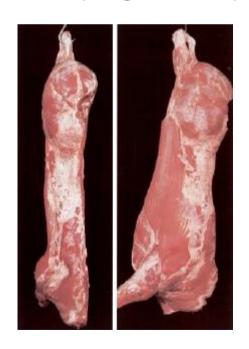
Docility

 Very important trait on all farms

 Initial editing for genetic parameter estimation

Breed of	
sire	count
CH	92,401
LM	68,204
SI	14,301
AA	12,315
BB	11,936
HE	4,696
SA	2,425
ВА	2,226
SH	1,845
AU	908
PT	429
PI	350
GA	45
HI	32
MA	23
RM	20
SP	17
GS	3
RW	2
RB	1

Total: 213,327

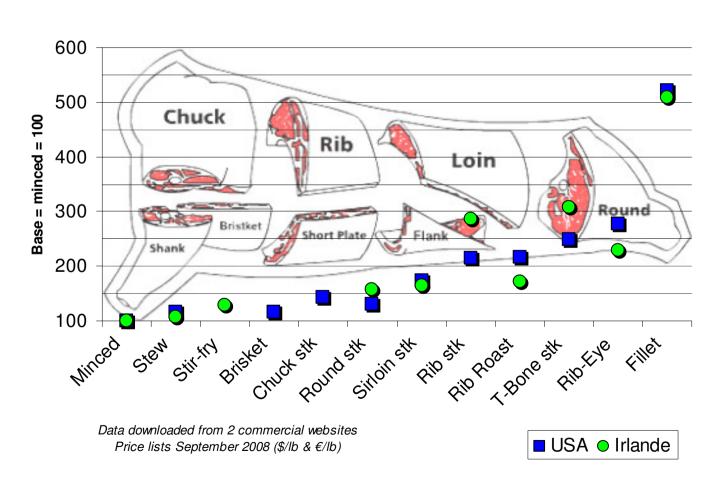

Herds with 5 records per sire, 5 animals per herd year season, at least 2 points used on the scale

Research on new production traits

- Can selection help Irish farmers produce carcasses that fit more the retailer's demand?
 - ... PhD Project of Thierry Pabiou ICBF
- •What data?
 - Is selection possible?
 - Integration into current breeding program?
 - Benefit for the Irish beef industry?

Current status of Beef Carcass Index

- The EUROP carcass classification
 - Assessment of conformation (6 grades) & fat
 (5 grades) by Experts / machines



Payment on carcass weight, conformation grading & fat grading.

Project Background: on the shelves

The value of a carcass is not uniform
 Different cuts, different prices

Data Available (1/2)

1. Basic carcass data

 Fed into Irish genetic database on a routine basis since 2001: weight, sex, EUROP grading

⇔ +3 million (July 2008) animals

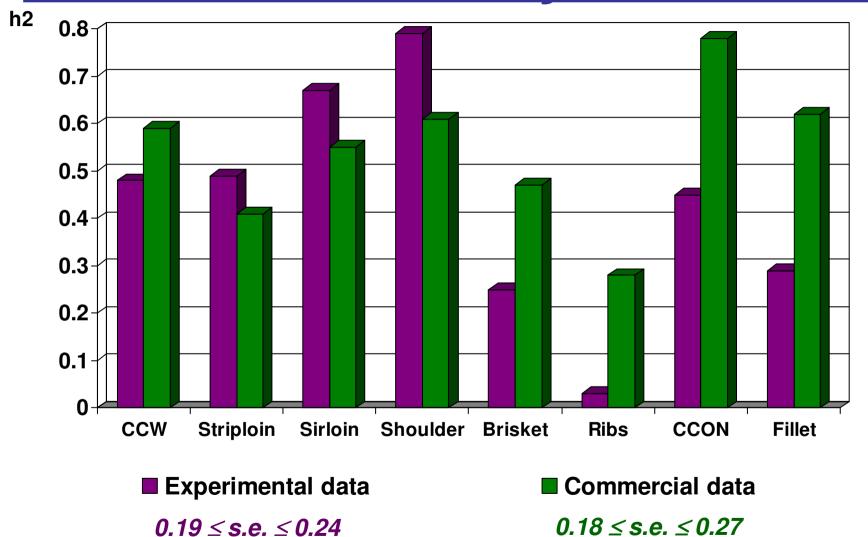
2. Digital images

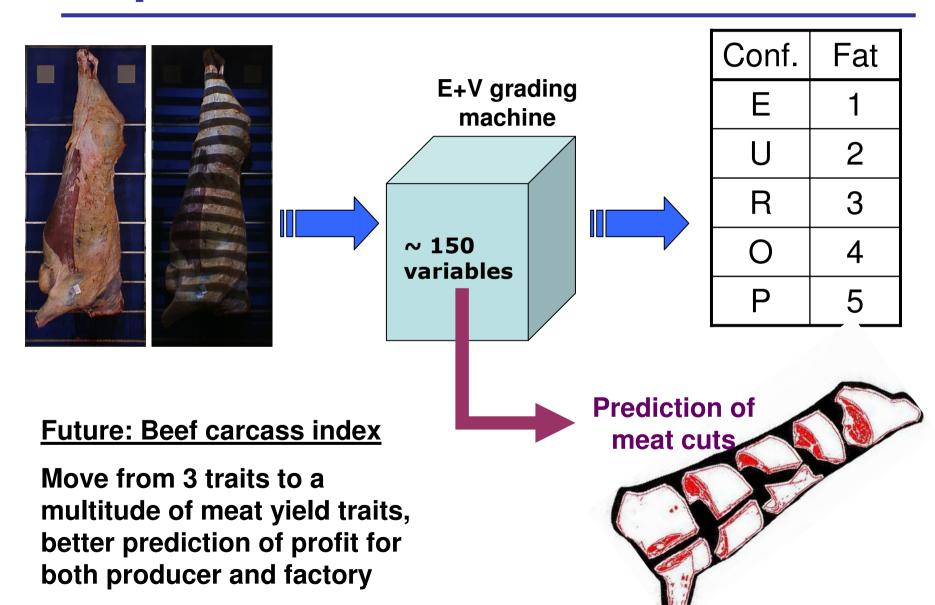
- To derive the EUROP grades
- Fed into Irish database on a routine basis since 2005

♦ 2 x 2 million (July 2008) images

Example of Images

- Mechanical grading machine VBS2000 (EplusV, Germany)
 - Approved since 2001 for grading beef carcasses
 - 2 images / carcass(2D & 3D)




Data Available (2/2)

- 1. Basic carcass data
- 2. Digital images
- 3. Carcass dissections: 2 datasets
 - Experimental dataset Teagasc (n=579)
 - Collected 2005 2008
 - 1 carcass broken into 23 cuts (kg)
 - Commercial dataset (n=10,845)
 - Collected 1999 2005
 - 1 carcass broken into 16 cuts (kg)

Heritability

Impact of research on indexes

Genomics in Beef

- Larger SNP chips on the way
- 300,000 within 2 years
- Across breed evaluations/database mean Ireland are in great position to become world leaders in beef breeding
- Need to collect as much proven beef semen as possible for testing over the next couple of years

Genomics in Beef - Implications

- Ability to screen lots of young bulls at an early age
- Progress in traits traditionally hard to measure e.g. feed intake, tenderness
- Identify better bulls younger and at a higher reliability > increased genetic gain
- Al companies put together teams of bulls e.g., terminal, maternal, overall etc
- Breeders/buyers will have more information on which to sell/buy bulls

