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IntroductionIntroduction

• Software can usually be a major limitation to practical 
application of  advances in methodologies

• Well resourced countries are usually first to implement and 
has implications for Interbull

• One of the possible hindrances to prediction of breed 
values using SNPs could be relevant and reliable software

• In an attempt to address this problem a number of 
interested scientists formed the so called club-ware

• Software developed and tested will be loaded on the 
website: www.genomicselection.net
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Objectives Objectives 

• Review the array of programmes at the website

• Summarise results  from implementations using 
Irish dairy cattle data

• Computation time and accuracy of direct genomic 
breeding value from several methods are 
compared

• Several variables were computed at various allele 
frequencies to examine differences among 
evaluation methods
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DataData

• Data consisted of 1095  AI Holstein-Friesian Bulls 
genotyped with the Illumina 50K chip and have daughters in 
Ireland

• After all edits 42265 SNPs were available on these bulls

• Genotypic values of 0  and 2 were assigned to the two 
homozygotes and 1 to heterozygote for each locus

• DYDs for milk, fat and protein yields, calving interval and 
survival were analysed in this study
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Genomic evaluation methodsGenomic evaluation methods

• SNP effects and DGVs were estimated using linear and Bayesian 
methods

• Linear methods included 
- BLUP1 - iterating on data
- BLUP2 – involved the use of the genomic relationship matrix

• Bayesian methods
- BayesA  
- BayesA-P  - Bayes A with polygenic effects included 
- BayesB  - with about 34% of SNPs effects assumed to be zero
- fastBayesB       
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Genomic evaluation methodsGenomic evaluation methods

• The MCMC chains were 80000 cycles with the first 24,000 
discarded as burn in period

• For BayesB 20 Metropolis-Hastings cycles were evaluated 
within each MCMC chain

• Analyses were carried out using a Sun workstation VG800 
with 32GB of memory and eight 5GHZ processors
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Genomic evaluation methodsGenomic evaluation methods

• Is the relative information contributed by SNPs at various 
frequencies to DGV  different among the evaluation 
methods?

• Several variables were computed at high(>0.80) , medium 
(0.4-0.79)and low (<0.40) allele frequencies to examine 
differences among evaluation methods 

– Mean SNP effects and variances
– Mean SNP deviations (VanRaden, 2008) and associated weight (Wt). 

wtj = (zj’r-1zj + α )-1 zj’r-1 zj
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Accuracy of genomic 
evaluations
Accuracy of genomic 
evaluations
• The 1096 sires were divided to a training and validation dataset

• Training set

– Only bulls with adjusted reliability > 40 were used in the training set

– 755  sires for milk traits and 729 for CI and  642 for SUR

• Validation data set

– Bulls have at least 40 daughters

– 254 sires born post 1996,  for milk traits

– 187 sires born post 1995 with reliability ≥ 65%   for CI

– 116 sires born post 1994 with reliability ≥ 65%   for  SUR
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Accuracy of genomic 
evaluations
Accuracy of genomic 
evaluations

• Statistics used to determine accuracy of 
evaluations based on the validation data set

• Correlation between DGVs and national EBVs

• Regression of national EBVs on DGVs

• Mean and std of differences between DGVs and 
national EBVs



10

Computing timesComputing times

• Most  were initially developed using the small example 
data. Thus this study was their first application to real data. 

BLUP1    BayesA   BayesA-P  FastBayesB  BayesB

Time:     5min     14.6hrs     22.9hrs          5-49min      65hrs   

• Times will be acceptable for a national evaluation 
system apart from BayesB. Currently almost all 
countries uses BLUP at national level to compute 
DGV

• However data set is small and time is expected to 
increase with more animals included
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Typical input file Typical input file 

• Inputfile for genotype information
• Inputfile for performance data
• Output file with SNP effects  
• Outputfile for mean effect
• 2000                              #no of iterations
• 10                                   # no of snps/markers
• 325                                 # no of animals
• 0.10                               # proportion as burn in
• 10                                   # genetic variance
• 1                      # type of prior 1=theo 2=xu,3=braak,4=yours
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Correlations and regressions of 
national EBV on DGV
Correlations and regressions of 
national EBV on DGV

Trait                                                      Method                                   
BLUP1    BLUP2   BayesA    BayesA-P   FastBayesB    BayesB

Milk yield
Correlation            0.68        0.69       0.70           0.72            0.67                0.65
Regression            1.31       0.78       0.99           1.49             1.30                0.98 
Mean bias (kg)     -31.2        18.1       -4.6           -165             4.40               -6.60
SD of bias            147.8      146.8     141.4         144.6          148.7              149.6

Fat yield
Correlation            0.65        0.67       0.68           0.62            0.65                0.58
Regression            1.32       0.80       0.89           1.09             1.35                0.58 
Mean bias (kg)     -3.82      -0.48       -1.01          -318             3.80              -0.50
SD of bias              4.89       4.74        4.53           4.92            4.88                5.73
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Correlations and regressions of 
national EBV on DGV
Correlations and regressions of 
national EBV on DGV
Trait Method

BLUP1 BLUP2 BayesA BayesA-P FastBayesB BayesB

Calving interval

Correlation 0.70 0.71 0.66 0.69 0.70 0.49
Regression 1.18 0.75 0.77 1.29 1.19 0.30
Mean bias (d) 4.02 0.28 0.11 -41.5 3.93 0.23
SD of bias (d) 2.35 2.43 2.55 2.42 2.36 4.71

Survival

Correlation 0.58 0.59 0.56 0.57 0.57 0.57
Regression 1.22 0.76 0.93 1.48 1.04 1.10
Mean bias (%) -1.60 -0.45 -0.45 2.53 1.63 -0.61 

Mean of bias (%) 1.46 1.47 1.47 1.49 1.46                              1.70
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Variables at various gene 
frequencies
Variables at various gene 
frequencies

High  Freq Medium  Freq Low Freq

BLUP1 Bayes
A

Bayes
B

BLUP1 BayesA BayesB BLUP1 Bayes
A

BayesB

Mean 
SNP

0.021 0.010 0.018 0.009 0.002 -0.010 -0.004 -0.011 -0.010

SNP 
VAR

1.333 0.667 1.081 1.333 0.670 1.081 1.333 0.747 1.197

SYD 0.556 0.019 0.021 0.073 0.004 -0.012 -0.107 -0.022 -0.012

WT 0.192 0.528 0.876 0.121 0.517 0.878 0.038 0.506 0.878
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ConclusionsConclusions

• Programmes were easy to use and have 
performed well in handling real data

• The accuracies from the linear and non-
linear methods are similar, but it seems 
BayesA has the best predictive ability in the 
dataset analysed
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ConclusionsConclusions

• The relative information contributed by 
SNPs at various allele frequencies to DGV  
seems to differ for various evaluation 
methods

• Possibly this could affect changes in allele 
frequencies when selecting  on DGV from 
the different evaluation methods and it 
should be studied
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