

IRISH CATTLE BREEDING FEDERATION

How genomic selection is increasing the profitability of the Irish dairy herd.

Brian Wickham Chief Executive, ICBF.

SMO Conference – Melbourne, Australia Applied Genomics for Sustainable Livestock Breeding Thursday 5th May 2011

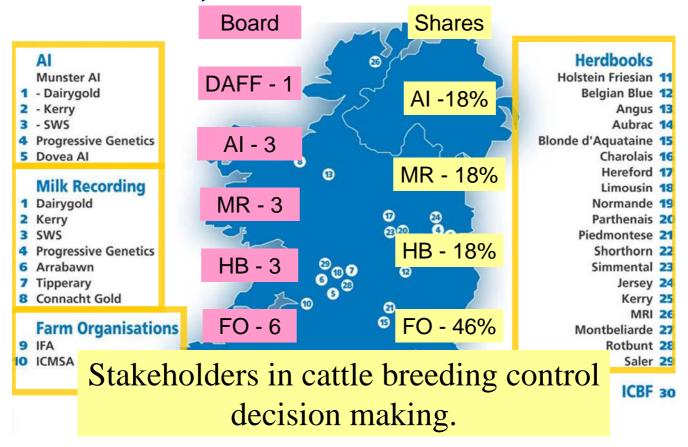
© Irish Cattle Breeding Federation Soc. Ltd 2011

Content

Background

Transforming Ireland

- · What do Irish farmers want?
- · Genomic key for Ireland
- Farmer communications
- Al industry response
- · Uptake of GS bulls
- Genetic trends
- · Changes to Breeding scheme design


BACKGROUND & STRUCTURE

© Irish Cattle Breeding Federation Soc. Ltd 2011

3

MEMBERS, BOARD & SHARES - ICBF

BREEDING OBJECTIVE & SELECTION CRITERIA

© Irish Cattle Breeding Federation Soc. Ltd 2011

5

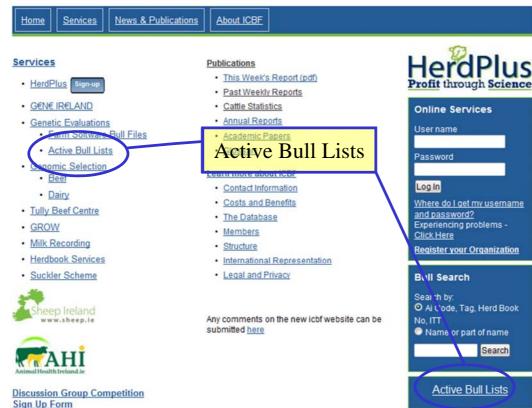
What do Irish dairy farmers want?

Breeding Objective

- Income (€) ++++
 - Milk (protein, fat, lactose, water)
 - Meat
 - Surplus animals
 - Breeding stock
- · Expense (€) -----
 - Grass & purchased feed
 - Replacements
 - Health
 - Labour
- Profit = Income Expense

Selection Criteria

 $E_{\text{conomic}}\,B_{\text{reeding}}\,I_{\text{ndex}} \ = \$

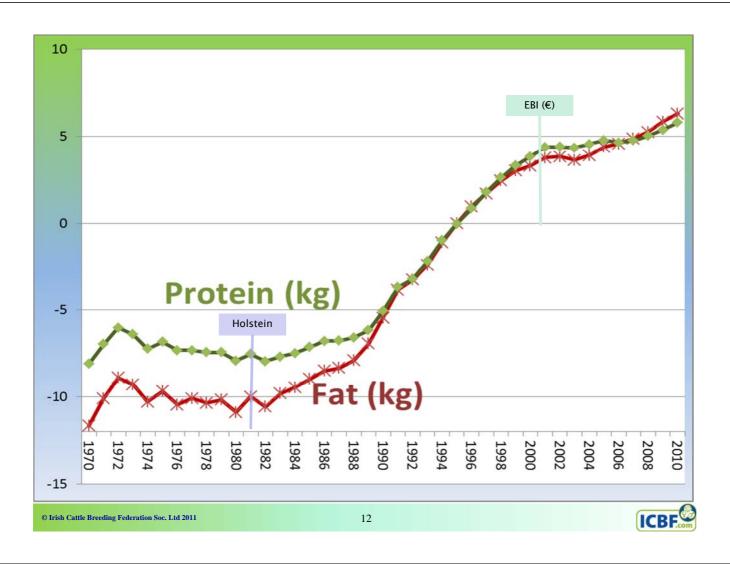

Milk sub index

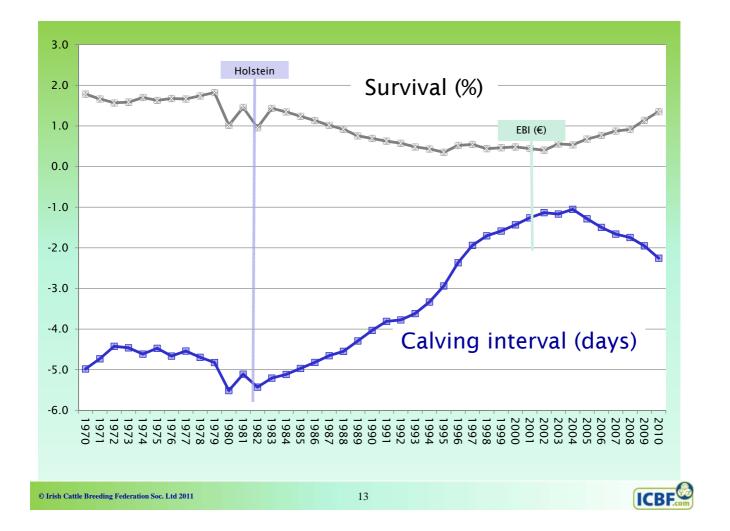
- + Fertility sub index
- + Calving sub index
- + Beef sub index
- + Maintenance sub
- + Health sub index

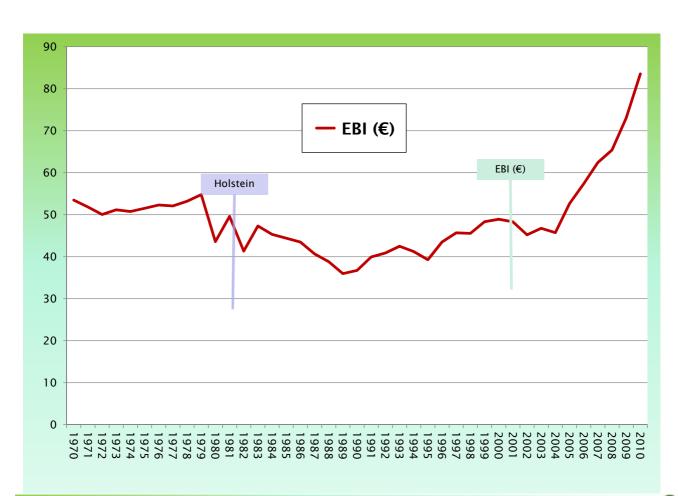
Striving to achieve the greatest possible genetic improvement in the national cattle herd for the benefit of Irish farmers, the dairy and beef industries and members. Learn more about ICBF.

Striving to achieve the greatest possible gene improvement in the national cattle herd for the ben of Irish farmers, the dairy and beef industries a members. Learn more about ICI

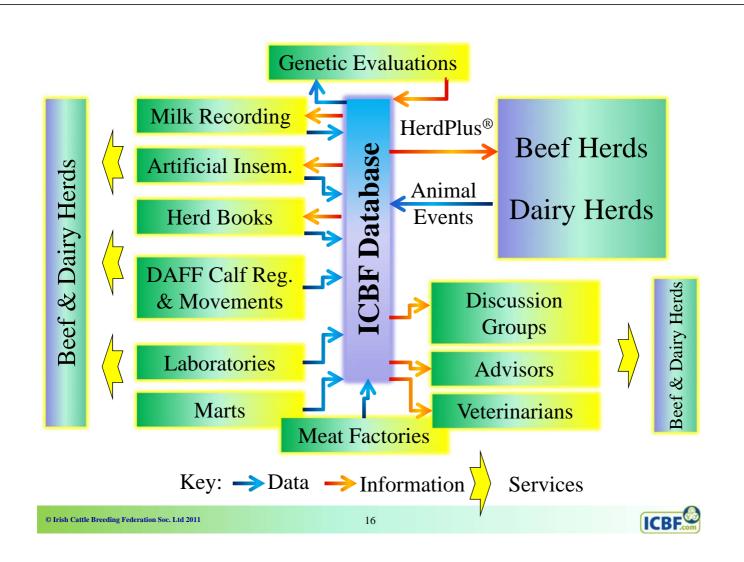
www.icbf.com - Dairy Active Bull List


View as Excel


SOK SOZ MJI	(IG) SUNNYBANK OMAN KEVINSFORT OJI HAZE MORRISHEEN OJI FRANK	O11 O11	но	PED PED	63 94	279 264	55	GS	73	170	32	-7	2	8	1508	Low	20	NCBC
	HAZE MORRISHEEN OJI		но		94	264	61								10101			
WJI		OJI	но	PED			01	GS	59	159	43	-4	-2	10	330	Medium	20	NCBC
				7.55	88	262	55	GS	121	108	36	-20	12	4	1390	Low	N	Eurogene/L
ВІ		-	-	n.a	:112		Ear	4	C-1	ls e	D	~~	ε	B.O.	in 4	u	ook	68-
.DI	=			848	IIK	+	rei	* +	Ca	ıv.	+ 0	cc	+	mai	IIIL.	+ 17	cai	LEE
						T							Т			T		
79	55	G	5	7	3		170)	32	2		-7		2			8	
						÷										+		
64	61	G:	S	5	9		159	9	43	3		-4		-2	2		10	
						Ļ							4			-		
62	55	G	2	1	21		105		36			20		11			4	
	79	79 55 64 61	79 55 GS 64 61 GS	79 55 GS 64 61 GS	79 55 GS 7 64 61 GS 5	79 55 GS 73 64 61 GS 59	79 55 GS 73 64 61 GS 59	79 55 GS 73 170 64 61 GS 59 159	79 55 GS 73 170 64 61 GS 59 159	79 55 GS 73 170 32 54 61 GS 59 159 43	79 55 GS 73 170 32 64 61 GS 59 159 43	79 55 GS 73 170 32 64 61 GS 59 159 43	79 55 GS 73 170 32 -7 64 61 GS 59 159 43 -4	79 55 GS 73 170 32 -7 64 61 GS 59 159 43 -4	79 55 GS 73 170 32 -7 2 64 61 GS 59 159 43 -4 -2	79 55 GS 73 170 32 -7 2 64 61 GS 59 159 43 -4 -2	79 55 GS 73 170 32 -7 2 64 61 GS 59 159 43 -4 -2	79 55 GS 73 170 32 -7 2 8 64 61 GS 59 159 43 -4 -2 10


DAIRY CATTLE GENETIC
TRENDS – TRAIT AVERAGES FOR DAIRY
CALVES BY BIRTH YEAR

© Irish Cattle Breeding Federation Soc. Ltd 2011



GENOMIC KEY FOR IRELAND

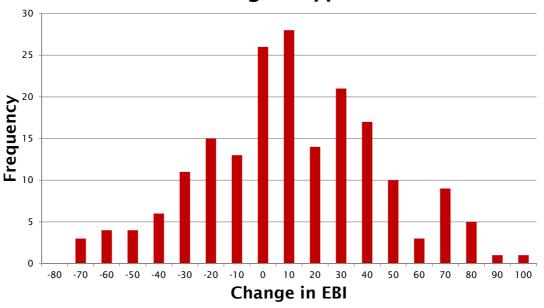
© Irish Cattle Breeding Federation Soc. Ltd 2011

Genomic Key for Ireland

- Data Irish (2009) and Interbull (2010)
 evaluations for proven AI sires with 50k
 genotypes 1,100 in 2009 and 6,500 in 2010
- Funding SFI, Teagasc & ICBF paid for 1,100 genotypes rest were obtained by exchange
- Expertise Donagh Berry & Francis Kearney visits, conferences & exchanges
- · Computing ICBF & Teagasc
- Time Nov '08 to Feb '09, repeated late 2009 with larger training pop'n.

© Irish Cattle Breeding Federation Soc. Ltd 2011

17



FARMER COMMUNICATIONS

What to Expect?

Distribution of EBI change from PA for 250 bull calves genotyped in 2010.

© Irish Cattle Breeding Federation Soc. Ltd 2011

© Irish Cattle Breeding Federation Soc. Ltd 2011

19

www.icbf.com - Dairy Active Bull List View as Excel Evaluation Date: Dec 2010 Herd Main Proof Calv **Bull Name** HO % EBI Fert Calv Price Supplier Breed Status (IG) SUNNYBANK OJI но PED 63 279 GS 1508 20 NCBC SOK 8 Low OMAN KEVINSFORT OJI 2 OJI но PED 94 GS 159 43 -2 10 330 NCBC KOZ 264 Medium 20 HAZE MORRISHEEN OJI GS 88 12 3 MJI OJI но PED 262 108 1390 19 Herd Proof ain Book **HO %** EBI Rel % Milk Fert Calv Beef ed Source Status DP-IRL daughter proven 0 73 170 32 -7 GS in Ireland DP-INT daughter proven 0 GS 59 159 43 -4 internationally GS genomic selection 121 -20 0 GS 108 36

Advice to Farmers

- · Stick to bulls on ICBF Active Bull List & use a team.
- · No shortage of choice.
 - Breed, milk kg, type, price....
- · Use ICBF Sire Advice facility.
 - Help select bulls and/or mate cows.
- · Use enough AI straws.
 - 1.5 straws for each cow & 1.0 straws for each heifer.
- Target 40 dairy heifers per 100 cows.

© Irish Cattle Breeding Federation Soc. Ltd 2011

21

RESPONSE

Al Industry Response

· 2009

- Genotyped bulls in PT pipeline
- Started genotyping bull calves before selection
- Offered GS bulls at lower price
- Promoted teams of GS bulls

· 2010

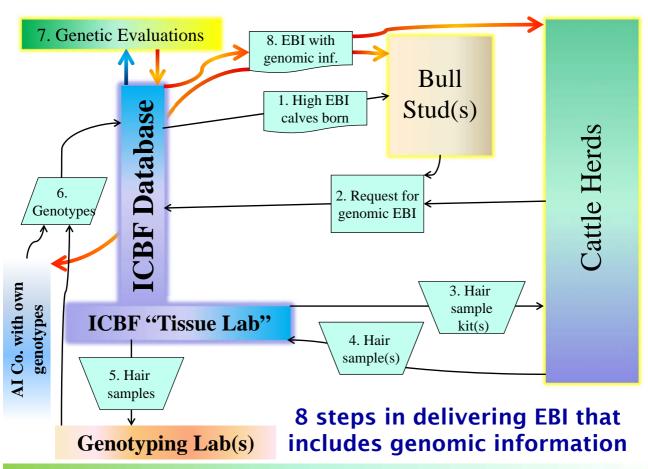
- Increased use and price of GS bulls
- IBR outbreak in young bulls at main stud
- Reduced bulls in PT
- Paying more for bull calves

© Irish Cattle Breeding Federation Soc. Ltd 2011

23

Al Industry Response

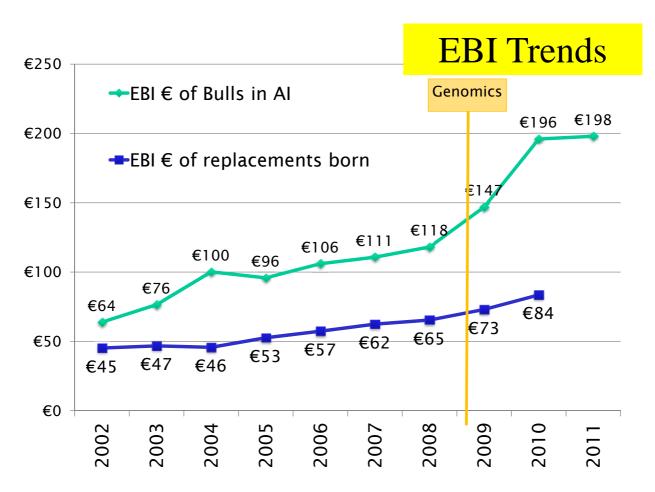
- · 2011
 - IBR outbreak in main stud
 - Increased genotyping of young bulls
 - Reviewing Design

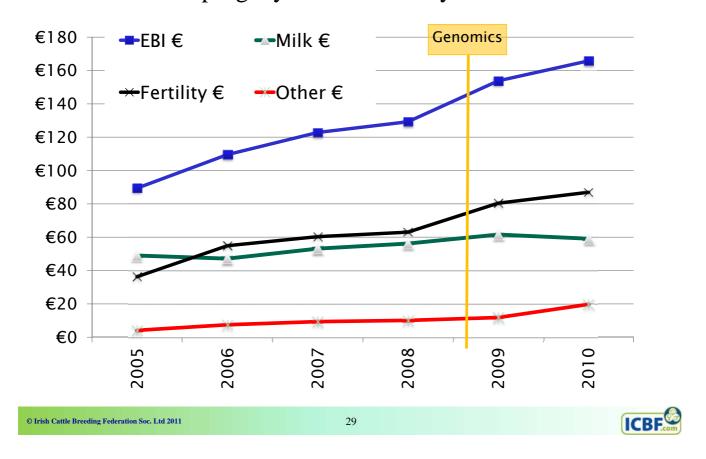


Farmer Response

		2009)	2010					
Proof type	% Use	Bulls /hrd	EBI (Rel)	% Use	Bulls /hrd	EBI (Rel)			
DP-IRL	37	2.7	120(86)	25	3	146(76)			
DP-INT	29	3	133(56)	34	3	155(47)			
GS	34	4	179(55)	40	4	218(56)			

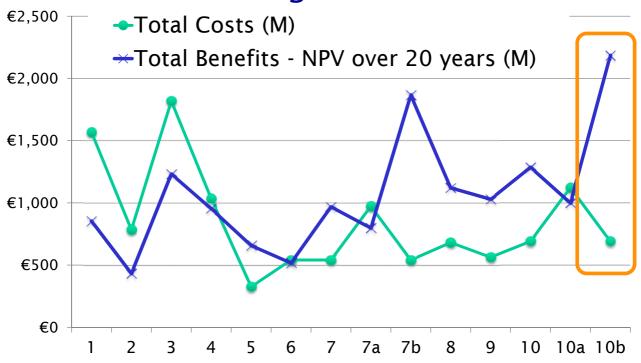
© Irish Cattle Breeding Federation Soc. Ltd 2011




GENETIC TRENDS

© Irish Cattle Breeding Federation Soc. Ltd 2011

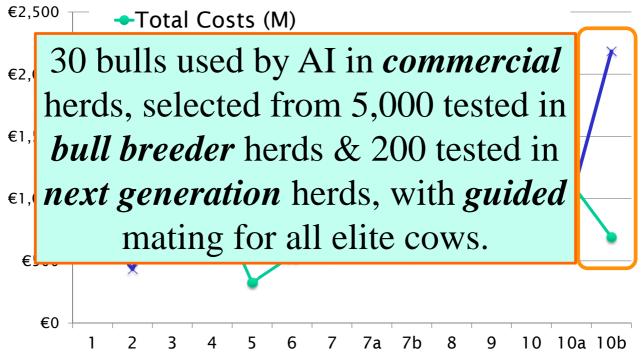
EBI and economic sub-indexes for dairy bulls entering progeny test in last six years.


G€N€ IR€LAND® - Research in 2010

• Four areas:

- Breeding programs to exploit genomics in Ireland
 McHugh.
- Cost & benefit analysis of the program options
 Amer.
- Directed advice for Bull Breeders McParland.
- Dairy cattle for use in research Teagasc Moorepark.

Costs & benefits for different dairy breeding schemes



© Irish Cattle Breeding Federation Soc. Ltd 2011

31

Costs & benefits for different dairy breeding schemes

Commercial Herds.

- Target: To develop a highly profitable National dairy herd.
- Objectives for these herds:
 - Basis for a profitable Irish dairy industry.
 - To collect data needed to facilitate best practice for farm management, animal health and cattle breeding.
- · Operations:
 - Independent businesses
 - Service providers (AI, Milk Recording, Herd Book, Advisory, Veterinarians) using ICBF database facility to access relevant comparative information.

© Irish Cattle Breeding Federation Soc. Ltd 2011

33

Bull Breeder Herds.

- Target: establish 100,000 high EBI cows on 1,000 farms, with all cows genotyped within 5 years.
- · Objective:
 - Provide data for genomic predictions through full recording of performance and genotyping.
 - Provide elite animals for breeding program through targeted matings using selected sires.
 - Use year one GS bulls to provide initial "progeny test".
- Operations:
 - ICBF providing targeted breeding advice, Al companies providing semen and purchasing elite bulls.

Next generation herds.

- Target: establish 1,000 elite high EBI cows over 5 research sites.
- · Objectives:
 - Validate and develop EBI New traits, e.g., mastitis, lameness, feed efficiency....
 - Provide elite animals for breeding program.
 - Conduct management research using relevant animal genetics
- Operations.
 - Replacements from Bull Breeder Herds
 - Research Centre (Teagasc) providing "day-to-day" and research agenda.
- · Ownership (of cows).
 - Research organisation.

© Irish Cattle Breeding Federation Soc. Ltd 2011

35

Summary

- · Irish cattle farmers want to breed more profitable cattle.
- Ireland now has a world-class system for finding cattle with the greatest genetic potential to increase profits.
- · Genomics is fundamentally altering the way we breed dairy cattle.
- Research has become an integral part of commercial dairy farming.

