
B. L. Harris January 2009







- Dairy cattle breeding
  - 1940s-1950s Dam-daughter comparisons ~ genetic gain = 0 kg fat/year
- 1960s Artificial breeding progeny testing ~ genetic gain 0.3 kg fat/year
- 1970s Contemporary comparisons ~ genetic gain 0.7 kg fat/year
- 1970s-80s Dedicated sire proving scheme





- Dairy cattle breeding
  - 1980s Breed for fat, protein and volume ~ genetic gain 1.1 kg MS/year
  - 1990s Animal model and Breeding Worth ~ genetic gain 1.8 kg MS/year
  - 2000 Inclusion of crossbred sires "KiwiCross" in the sire progeny scheme
  - 2000s Selection for fertility and somatic cell and test day model ~ genetic gain 1.8 kg MS/year





- Molecular genetics
  - 1944 DNA isolated as the "genetic material"
  - 1953 DNA structure discovered
  - 1977 DNA sequenced for the first in time
  - 1985 DNA finger printing discovered
  - 2001 First draft of human genome
  - 2001 methods for genomic selection outlined





- Molecular genetics
  - 2001 First quantitative milk production gene discovered by LIC and Holland Genetics
  - 2003 Second quantitative milk production gene discovered by LIC and Holland Genetics
  - 2006 First draft of Bovine genome
  - 2006 Affymetrix 15,000 SNP chip available for Bovine
  - 2008 Illumina 50,000 SNP chip available for Bovine





- Molecular genetics
  - The process of information use and discovery in dairy cattle breeding
    - Determining if major genes exist
    - Estimating genetic marker effects within family
    - Estimating genetic marker effects within and across families
    - Finding causative mutations (DGAT1)
    - Processing DNA information in routine genetic evaluations





breeding incorporating DNA information as new source information we are at the beginning of journey





# Why do we progeny test?




We only know that the young bull inherited 1/2 of his genes from the sire and dam, we don't know the actual genes that were inherited from each parent





# Why do we progeny test?

50 years of technical improvement



It is only progeny information that can indicate which genes were actually inherited





- Select bulls for widespread use based on their DNA profile rather than using progeny testing based on their the performance of their daughters
- DNA profile enables us to work out which parts of DNA were inherited from each parent
- Increased information relative to pedigree associations











# Genomic Selection: Results LIC, CRV and USDA

- LIC genotyped 4,500 sires born in the 1980s to the present using the Illumina BovineSNP50 BeadChip (50,000 SNP)
  - The data included approximately 2,400 Holstein Friesian, 1,500 Jersey and 650 Holstein Friesian

    –Jersey crossbred sires





# Genomic Selection: Results LIC, CRV and USDA

CRV genotyped 4,000 NLD and 1300 NZ sires born using the custom chip (57,000 SNP)





# Genomic Selection: Results LIC, CRV and USDA

- USDA genotyped 7,000 sires born in the using the Illumina BovineSNP50 BeadChip (50,000 SNP)
  - The data included approximately 5,300 Holstein Friesian, 1,300 Jersey and 350 Brown Swiss sires





### Genomic Selection: Results LIC

Increase in reliability of the young sires (over parent average)

| Trait        | HF  | JR  | KX  |
|--------------|-----|-----|-----|
| Protein      | +23 | +15 | +29 |
| Somatic Cell | +21 | +22 | +21 |
| Liveweight   | +18 | +19 | +33 |
| Fertility    | +30 | +14 | +14 |

• Predicting an increase in the rate of genetic trend ≥ 50%





# Genomic Selection: Results CRV

Increase in reliability of the young sires (over parent average)

Protein yield +17%
 overall conformation +14%
 somatic cell count +11%

• Predicting an increase in the rate of genetic trend 30-40%

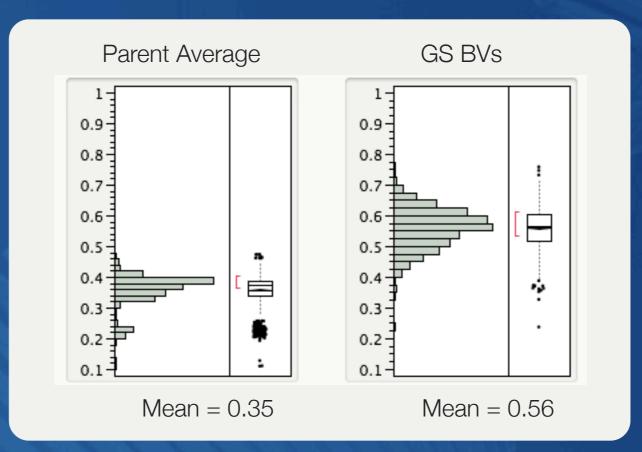




#### Genomic Selection: Results USDA

Increase in reliability of the young sires (over parent average)

| Trait        | HF  | JR | BS  |
|--------------|-----|----|-----|
| Protein      | +22 | +4 | +1  |
| Somatic Cell | +21 | +1 |     |
| Stature      | +26 | +9 | +3  |
| Fertility    | +16 | +5 | / - |

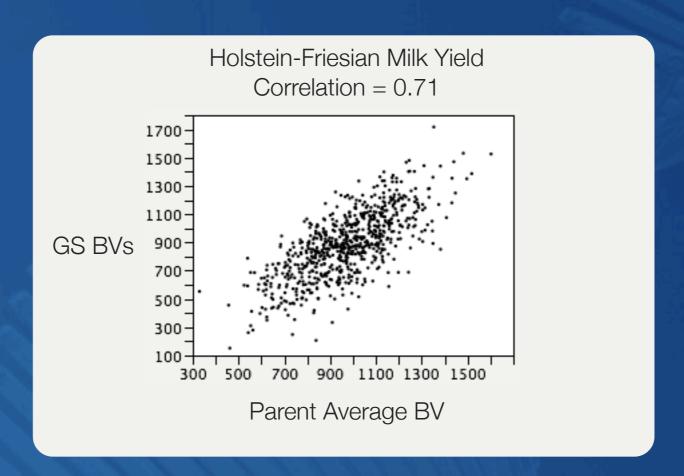

Predicting an increase in the rate of genetic trend >50%





# Genomic Selection: Results NZ

Increase in reliability of the young sires (over parent average)
 Protein Yield (n=1585)








# Genomic Selection: Results NZ

Genomic breeding values versus parent average (n=720)







- Ireland
  - 1000 genotyped Holstein sires on the BovineSNP50 BeadChip
  - Collaborating with New Zealand by exchanging Holstein phenotypes and genotypes
  - Joint analysis accounting for a genetic correlation between Ireland and New Zealand of < 1</li>





- Ireland
  - Effective way to increase the training data size for both countries
     Improves the accuracy of genomic selection in both countries
  - Provides a mechanism to select sires from foreign countries that perform in Ireland and vice-versa
  - Ireland can provide Irish genomic BVs for young sires from foreign countries rather than parent average





- Countries selecting bulls based on genomic information
   Production HOL: DNK, FIN, SWE, NZL, USA, AUS, CAN, FRA, DEU, NLD
   JER: DNK, FIN, SWE, NZL, USA, AUS
- Fertility HOL: DNK, FIN, SWE, NZL, USA, AUS, CAN, FRA, DEU, NLD
   JER: DNK, FIN, SWE, NZL, USA, AUS
- Countries planning on having genomic information included in their official breeding values in 2009
   NZL, ISR, FRA, IRL, CAN, DEU, USA, AUT, POL, ESP, AUS





# Progeny testing program redesign



#### **DAUGHTER PROVEN - 7 years** YEAR 3 YEAR 4 YEAR 5 YEAR -1 YEAR o YEAR 1 YEAR 2 25 elite 300 bulls Cows proven bulls used in Sire Hundreds of **Bull calves** Daughters Daughters available for selected Daughter Proving bull calves for contract purchased born mated calves widespread Scheme mating use in herds Premier Sires and Alpha



#### Genomic Selection and National Genetic Evaluation

- Include genomic data as the fourth source of information in the breeding value
- Methods to work in an across breed genetic evaluation in New Zealand





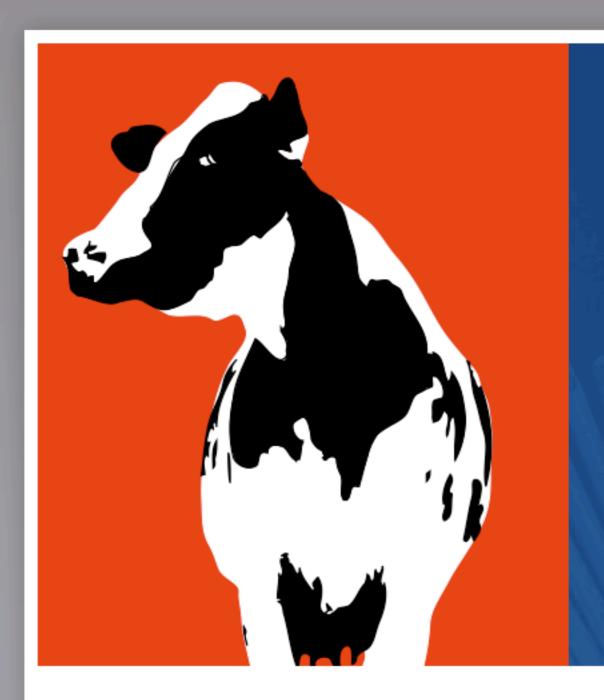
#### Genomic Selection and National Genetic Evaluation

- A method has been proposed that incorporates the SNP information as genomic relationships
  - Genomic relationships replace the pedigree relationships
  - Explains some of the Mendelian sampling which is not explained by the parent average breeding value
  - Requires dense SNP chip





- Future Research (Short term)
  - Genomic Selection model refinement
  - Joint IRL and NZ analysis
  - Building a time series of validation data sets
- Future Research (Long term)
  - 300k bovine SNP chip
  - Full sequencing of sires DNA






- There will be better analytical methods and better DNA information in the future
- Considerable research will be undertaken to optimise the use of the new information over the next 10 years







# Questions



