

IRISH CATTLE BREEDING FEDERATION

ICBF Dairy & Beef Genetic Evaluations Meetings.

Wednesday 21st July 2010. Maldron Hotel, Portlaoise.

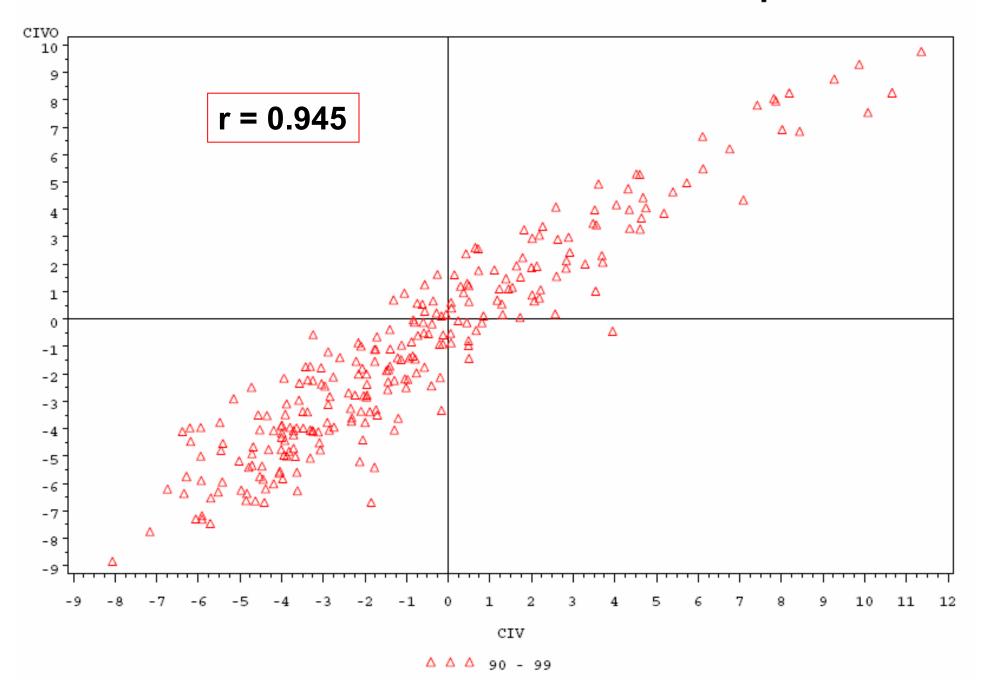
Agenda 2. Dairy & Beef Traits

- Agenda 2 (11.45 3.00)
- 11.45. Female fertility traits Ross.
- 12.30. Male fertility traits Ross.
- · 1.00. Lunch.
- 1.30. Calving traits Francis.
- 2.15 Carcass cut data & other beef traits Thierry.
- 2.30 Al application process Pat.
- 2:45 Catalogues Brian W

IRISH CATTLE BREEDING FEDERATION

Female & Male Fertility Evaluations

Ross Evans.


New female fertility evaluation update

- Extra traits: parity 4,5, CFS, NS
- New genetic parameters: reduction of genetic relationship between milk and fertility with CFS introduction
- New software
- Increase CIS cut-off limit 600-800 day
- Similar model to apply for beef animals

New female fertility evaluation update

- Jan 10 update: Still too much re-ranking concerns to switch to new yet
- Attempted to run new model on old software but no success so testing focused on reducing differences in proofs with new software
- Correlations improving for both calving interval and survival
- Problematic re-ranking cases still being investigated

Al sires CIV combined old v new 1st 3 par

Female Fertility - Next phase

- Work is nearing completion
- Re-run of genetic parameters for some trait relationships causing problems
- Hoping to enter INTERBULL test run for September
- Circulation of test proofs and decision on new proof introduction made after that

Male Fertility

- Use of insemination data to provide early indicators of sire fertility rates to AI companies
- Models developed by Teagasc (Donagh Berry) based on existing evaluations worldwide
- Evaluation developed in MIX99 and made operational in May 2010
- 4 updated runs done and provided to Al companies upon request

Male Fertility: Model

- Fixed effects:
 - Parity of cow
 - Dystocia in previous calving
 - Stillbirth in previous calving
 - Calving to service days
 - Heterosis and recombination, cow and embryo
 - Service number
 - Month of service
 - Herd x year of service
 - Day of week
 - Straw type

Male Fertility: Model

- Random effects:
 - Cow: Genetic and repeatability
 - Service sire
 - Sire x year
 - Technician
 - Technician x year

Male Fertility: Data Edits

- Gestation lengths assumed
 - 265 to 295 if a Holstein-Friesian sire
 - 265 to 300 if sire was not Holstein-Friesian
- Services within 10 days of calving discarded
- Services within 5 days treated as same service
- Services >400 days post calving discarded

Pregnancy status coded as missing if Al service was:

- within 25-days of the end of the Al breeding season
- within 25-days of cow being culled
- within 25-days of the date of data extraction

Male Fertility: Data Edits

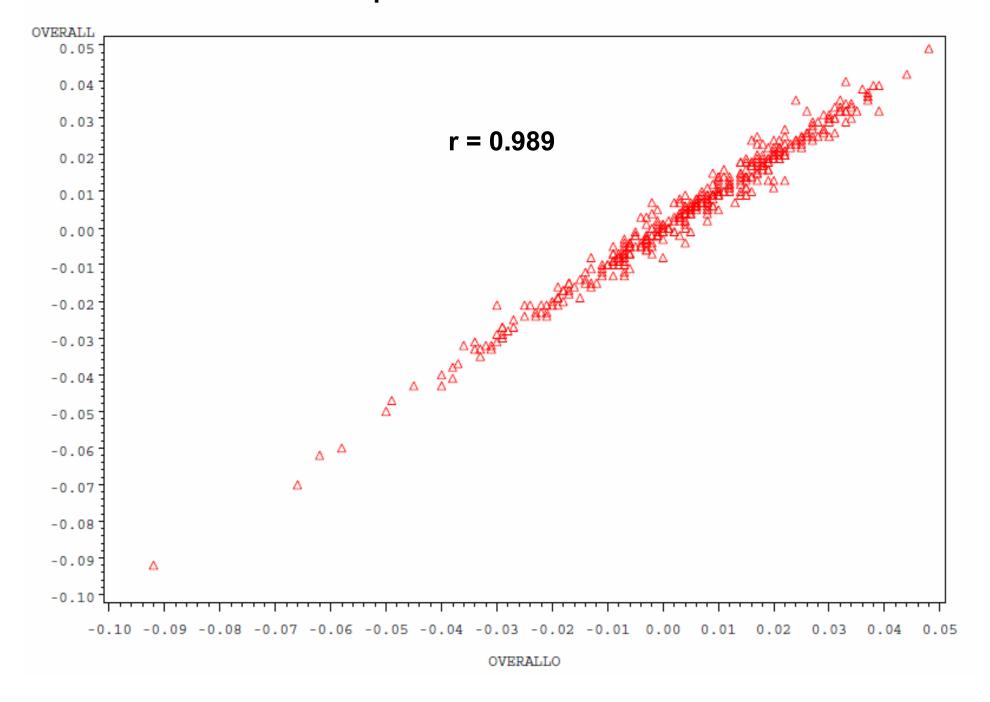
Inseminations are categorised into 5 states

Count of Total straws analysed	% where insemination is validated by a subsequent calving	% where cow had a subsequent service	% where cow was scanned not in calf	% where subsequent calving date suggests a later conception	% Assumed pregnant unless proven otherwise
1,492,121	27%	31%	7%	23%	34%

• insemination starts off where cow is assumed pregnant unless proven otherwise

Male Fertility: Results

	All Al sires n= 2202	Sires >500	Sires >1000	Sires >2000	Sires > 3000
	11- 2202	straws	straws	straws	straws
No. of Sires	2202	n= 410 410	n= 244 244	n= 135 135	n= 86 86
Preg: avg Min Max Adjusted Difference	51.3% 0% 100% -9.2 to + 4.9 14.1 %	51.9% 23.1% 64.7% -9.2 to + 4.9 14.1 %	52.3% 39.5% 62.1% -7.0 to + 4.2 11.2 %	52.5% 40.4% 62.1% -7.0 to + 3.7 10.7 %	52.4% 41.1% 62.1% -6.2 to + 3.7 9.9 %
Correlation with raw	0.31	0.68	0.70	0.72	0.72


Effect of calving difficulty on pregnancy rate

Туре	of Calving	No. of records	Effect
1	no assistance	820,327	Base
2	some assistance	196,111	-2.4%
3	serious assistance	34,686	-6.1%
4	veterinary/casarean	21,973	-10.4%

Other cow and fixed effects on pregnancy rate

covariable	effect
heterosis in cow	0.7%
recombination	-0.9%
calvserv	0.3%
no_serv	20.8%

old and new proofs 500 straws in old eval

Male fertility - Summary

- New evaluation system available for Al companies.
 - Bull information.
 - Technician information.
 - Semen type.
- Valuable male fertility information for industry.
- Genetic differences between bulls (+/-6% on pregnancy rate).
- Economic value of this trait?
- Feedback welcomed.

IRISH CATTLE BREEDING FEDERATION

Calving Performance Evaluations

Francis Kearney

Calving Performance

- Separate calving on heifers vs calving on later parities rather than including overall parity effect (test-runs underway)
- New genetic parameters (done).
 Heritability is lower so more records needed to reach the same level of reliability. Also individual score will not impact on proof as much.
- ET calves are currently not included but only if ET animals are recorded properly
- Include foreign breeding values for imported bulls

Calving Performance

- Considering dropping calving scores for purebred BB due to elective sections – can influence proof for bull used in both pedigree and commercial herds – what about elective sections for other breeds?
- Consider dropping all data from pedigree herds. Parent average calving proofs for young animals (identifying easy calving lines would come from calving results of bulls used as AI bulls or stock bulls on commercial farms) – may be an issue for bulls used only in Pedigree herds?
- Historical information will no longer be used due to processing time.

Calving Performance

- Currently based on parameters that were estimated a number of years ago
- Large increase in data in the last number of years
- Estimates of heritability based on records across all lactations
- Is heifer calving/gestation a different trait?

Current Model

- Evaluate calving difficulty, maternal calving difficulty, gestation, mortality
- No correlation between traits except a negative 0.7 correlation between direct and maternal calving difficulty
- Historical calving data used as a correlated trait for each trait

Heritabilities

Current Estimates

New Estimates

	heritability
Calving Diff	0.25
Gestation	0.40
Mortality	0.01

	heritability
Calving Diff	
1 st	0.13
Later	0.07
<u>Gestation</u>	
1 st	0.45
Later	0.40
Mortality	No estimate

New estimates in line with those in the literature

Correlations

	CD	MCD	Gestation
1st – Later	0.72	0.29	0.93

Correlation between two traits less than 0.8 indicate traits are not controlled by the same genes

Correlations

Correlation between direct and maternal – current estimates indicate that daughters of bulls that are easy calving have difficulty calving themselves

	Current	New
CD-MCD	-0.7	
CD-MCD -1st		-0.48
CD-MCD - later		-0.24

Implications

- Lower heritabilities for calving diff will result in lower reliabilities especially for new test bulls
- Biologically a model with 1st and later parities evaluated separately should be used for CD, MCD
- Weighting between 1st parity and later parities must be calculated
- Direct calving will have less of an impact on maternal calving due to a lower correlation

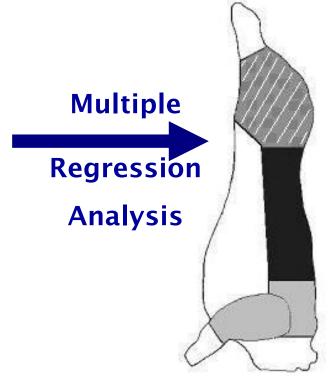
Implementation

- Test-runs underway
- Feedback on the other issues welcome
- Target to submit to Interbull test run in Sept 2010
- Test result distributed for consideration by Industry
- Implementation for Spring 2011 evaluation (Dec 2010)

IRISH CATTLE BREEDING FEDERATION

Using Wholesale Carcass Cuts Predicted from Digital images


T. Pabiou


ICBF

Motivation

Principle

- Lower value cuts
- Medium value cuts
- /// High value cuts
- Very high value cuts

Also available on steers:

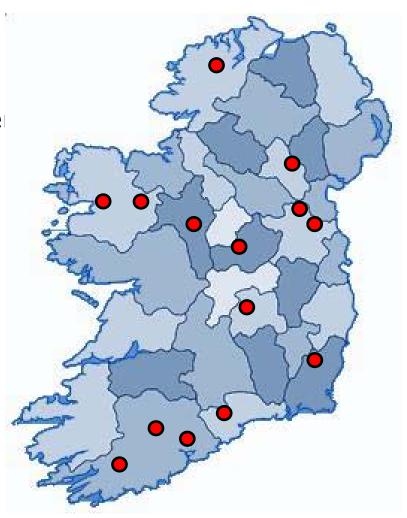
- ·Total meat weight
- · Total fat weight
- ·Total bone weight

Motivation

$\cdot R^2$ of regressions

	Dataset		
Wholesale Cut Weight	Steer	Heifer	
Lower Value Cuts	0.92	0.65	
Medium Value Cuts	0.86	0.70	
High Value Cuts	0.93	0.85	
Very High Value Cuts	0.84	0.72	

Objective


Using wholesale cuts predicted from digital images

=> Calculate genetic parameters & genetic associations

Data Used

- Digital images collected
 - -(x2) images of steers & heifers slaughter between Nov. 2006 and May 2009
 - -Across 14 slaughter houses in Ireland
 - -Raw data = $515,494 \times 2$ images
- · Main edits on carcasses
 - -Absence of parentage (n = 355,704)
 - -Insufficient contemporary group size (n = 63,379)
 - -Error in recovering historical files (n = 30,760)

Predicted Traits

Steer data

N = 38,404

- Total meat (kg)
- Total fat (kg)
- Total bone (kg)
- Lower value cut (kg)
- Medium value cuts (kg)
- High value cuts (kg)
- Very high value cuts (kg)

<u>Heifer data</u>

N = 14,318

Total meat (kg)

- Lower value cut (kg)
- Medium value cuts (kg)
- High value cuts (kg)
- Very high value cuts (kg)

Mean Performances

	Hei	fers
	Mean	CV
Carcass weight (kg)	290	15%
Overall Predicted weights (kg)		
Total meat	175	11%
Total fat	n/a	n/a
Total bone	n/a	n/a
Wholesale predicted weights (kg	g)	
Lower Value Cuts	91	16%
Medium Value Cuts	20	18%
High Value Cuts	46	18%
Very High Value Cuts	21	17%

Mean Performances

	Hei	fers	Ste	ers
	Mean	CV	Mean	CV
Carcass weight (kg)	290	15%	344	14%
Overall Predicted weights (kg	g)			
Total meat	175	11%	231	15%
Total fat	n/a	n/a	44	34%
Total bone	n/a	n/a	76	12%
Wholesale predicted weights	(kg)			
Lower Value Cuts	91	16%	88	21%
Medium Value Cuts	20	18%	49	16%
High Value Cuts	46	18%	60	15%
Very High Value Cuts Cattle Breeding Federation Soc. Ltd 2009	21 34	17%	25	ICBF.

Genetic Correlations

Steers Heifers	Carc. weight	Low. V. cuts	Med. V. cuts	High V. cuts	Very H. V. cuts
Carcass weight		0.4	0.32	0.43	0.45
Lower V. cuts	0.26		0.45	0.66	0.57
Medium V. cuts	0.10	0.47		0.79	0.86
High V. cuts	0.26	0.80	0.82		0.89
Very H. V. cuts	0.38	0.69	0.82	0.82	

Genetic correlations between steer & heifer traits > 0.55 => same trait in the evaluation


What's Next?

- Estimates genetic correlations with existing traits used in the evaluation (linears...) => Autumn 2010
- · Streamlining the process of cut conversion
 - Interaction with EplusV => From summer 2010
- Integrating the new traits in the current genetic evaluation
 - In the carcass evaluation => Spring 2011

New AI Code Approval System

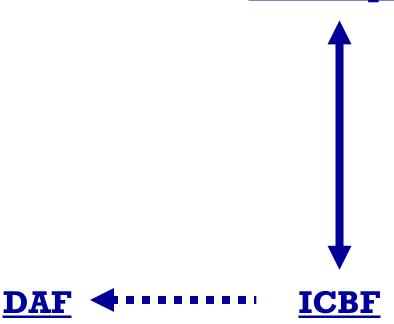
Pat Donnellan

New AI Code Application System

Backround

- Historically DAF administered all AI Codes 1950's 2000.
 - 'PP' Friesian Pewsey Primate born 14th April 1952
- ICBF started administration of AI Codes in 2000.
 - Paper based application process.
 - Pedigree Certs & other.
 - documentation included with applications.
 - @ 300 AI Codes per annum.
- 2010 Opportunity to modernise & improve this system.
 - Web based.
 - Database now allows each Breed Society be in control of pedigree data for Bulls of their Breed.

AI Code Application System



Currently

Paper Based Application System

AI Company

1. AI Company sends application for AI Bull to ICBF

ICBF provides DAF with a list of AI Bulls on request

2. ICBF:

- 1. Ensures Bull receives correct Approval Status.
- 2. Administers AI Code
- 3. Enters Bull & Ancestry if necessary

AI Code Application System

New System

Web Based Application System

AI Company

3. ICBF administers Bull's AI Code & sends to AI Company via web system.

1. AI Company contacts
Breed Society & ensures
that Bull & Ancestry is
complete in database

Breed Society

2. AI Company applies for Bull's AI Code via web system.

DAF ◆···· ICBF

DAF can login to AI Code system also.

Why Change the AI Code Application System? Breed Society

- Pedigree Status of Bull approved by Breed Soc before calves are born – prevents confusion over Ped status after straws used.
- Aware of Bloodlines being used by Breeders earlier.
- DNA/Blood details <u>definitely</u> entered at time of coding.
- Names entered in format preferred by Breed Society (imp'08, ET).
- Extra information entered by Breed Society EX92, Polled, Red Factor Carrier, Genetic Defect Results.

AI Company

- Quicker Turnaround time of AI Code.
- AI Code receipt is not email dependant.
- Anyone in the Organisation can log in and see what the status of a Bull's AI Code approval is.

Ancestry (e.g. 2009)

Beef Al Bulls				
Breed	Bulls	Backped Edited		
Angus	21	17		
Aubrac	1	1		
Blonde	8	8		
Belgian Blue	30	25		
Charolais	15	14		
Hereford	2	1		
Limousin	21	15		
Piedmontese	9	9		
Parthenaise	6	6		
Saler	6	5		
Shorthorn	10	8		
Simmental	17	14		
	146	123		

Dairy Al Bulls			
Breed	Bulls	Backped Edited	
Ayrshire	3	3	
Brown Swiss	3	3	
Friesian	9	4	
Holstein	84	8	
Jersey	17	9	
Montbeliarde	5	5	
MRI	2	2	
Normande	5	5	
Norwegian Red	5	4	
Pinzgauer	7	7	
	140	50	

Other Al Bulls			
Breed	Bulls	Backped Edited	
Belted Galloway	1	1	
Dexter	1	1	
Galloway	1	1	
Irish Maol	1	1	
Rep Poll	1	1	
Speckled Park	2	1	
	7	6	

- •Whether Bull & Ancestry data has to be entered depends on:
 - Breed & Origin of Bull
 - Outcross Pedigree of Bull

What next?

- •Role out to commence immediately.
- •Summer & Autumn period allow system to bed in before Spring 2011.
- •AI Companies already have logins & passwords.
- Instruction document to be circulated to

Breed Soc's & AI Companies.

