

ICBF Dairy Industry Meeting.

Teagasc, Moorepark 23rd November 2007.

Agenda

- Changes proposed for Nov/Dec 2007
 - EBI Developments Laurence Shalloo.
 - Updating calving performance Francis Kearney
 - Updating linear type proofs Francis Kearney
 - Roll-out of proofs & plans for 2008
- For Information
 - Improving female fertility evaluations Kate Twomey (Donagh Berry)
 - · Use of insemination data.
 - Across breed proofs Ross Evans.
- Any other business

EBI Development

Overview

• Milk price assumption

• Sensitivity around feed prices

Review 2007

Quota to Land Limiting

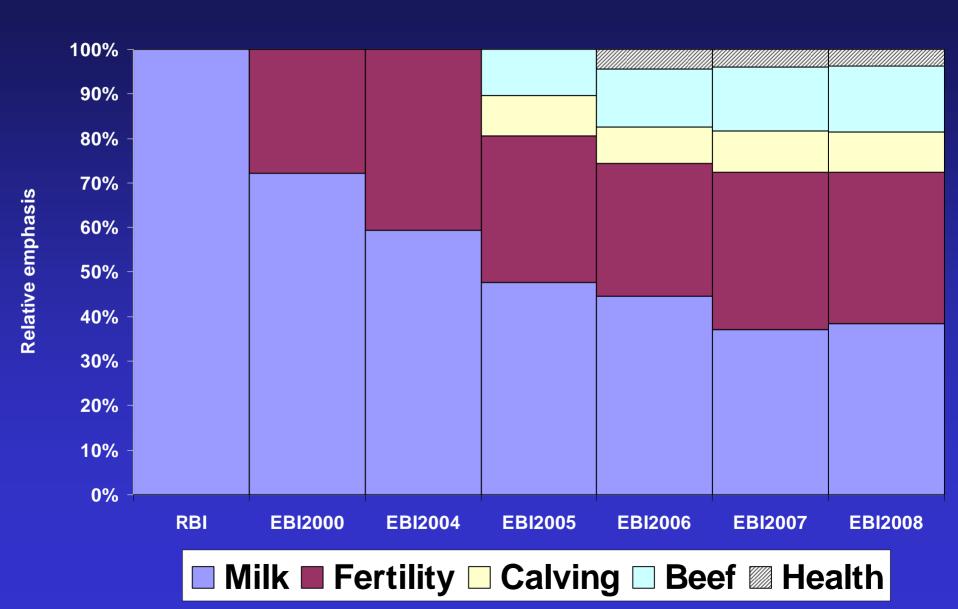
• Protein to fat value increased from 2 to 1 to 2.7

to 1

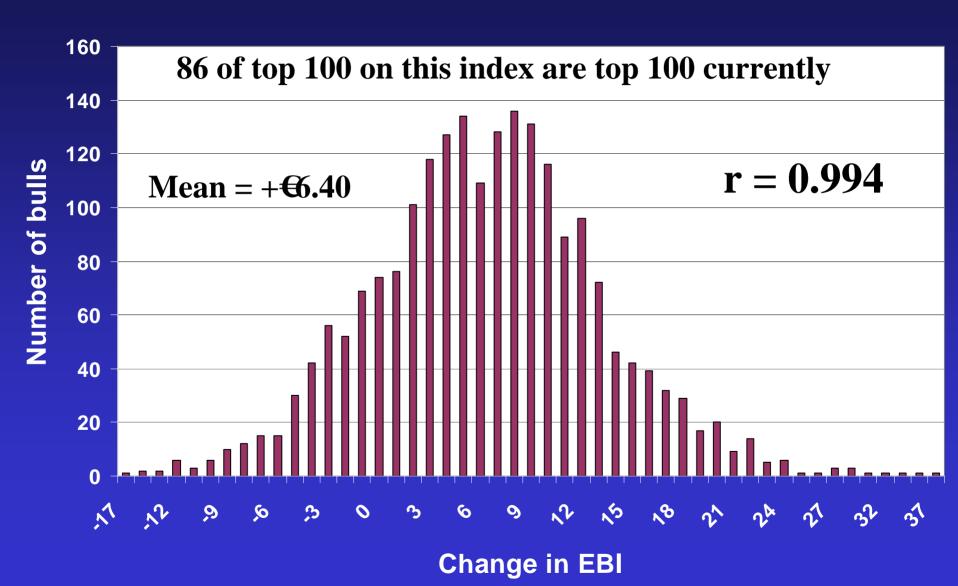
Update all costs and Prices

- Many changes have occurred to predicted prices in 2007;
 - Milk price
 - Grain price
- Some of reasons for these changes;
 - Biofuels
 - Global warming Australia
 - Demand for dairy products

Assumptions for 2008

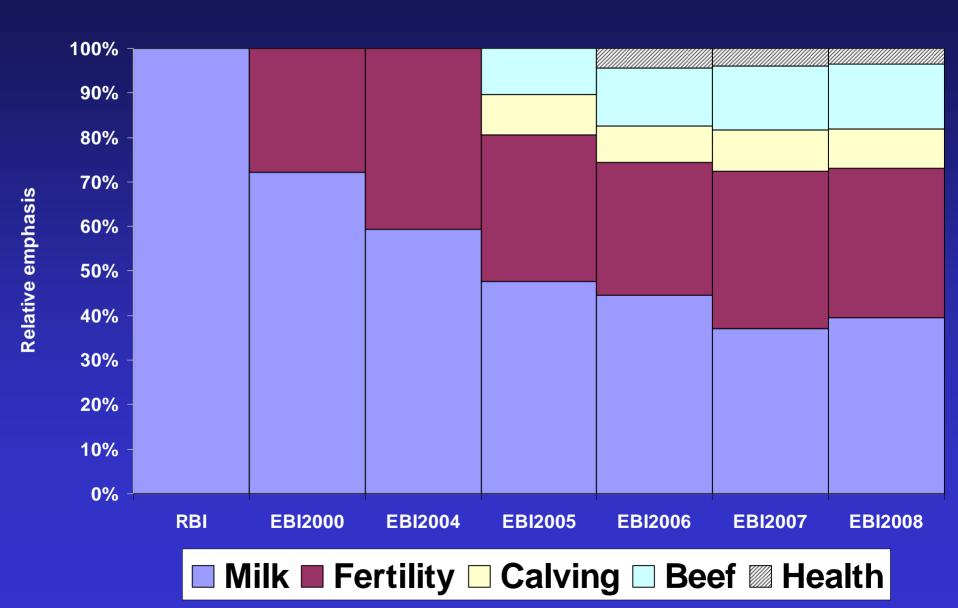

- All costs and prices
- Concentrate costs at €250/tonneDM
- Opportunity cost of land €500/Ha
- Milk price
 - -28c/1

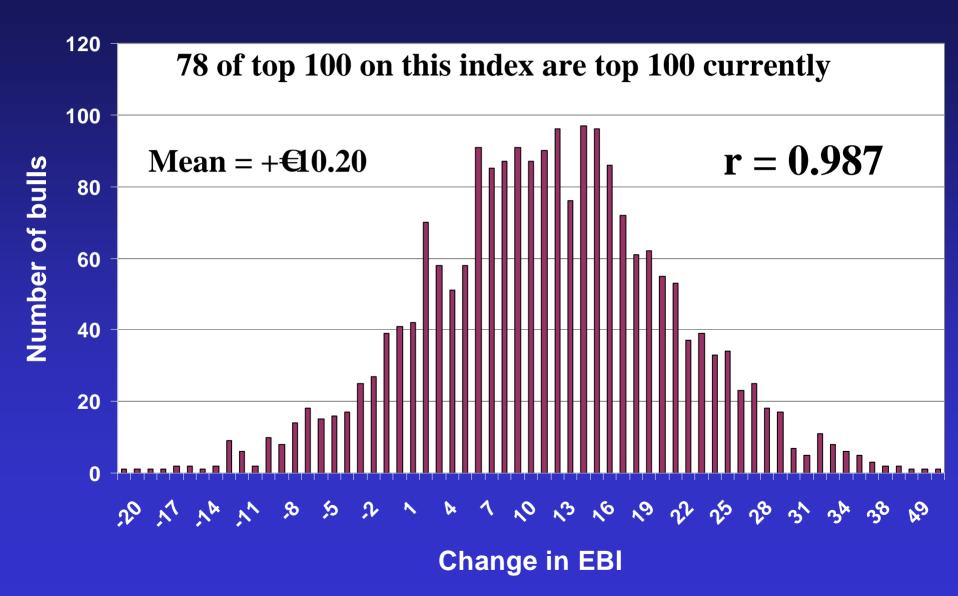
			In	dex		
		Current	26c/l	28c/l	30c/l	
Milk Yield	\Rightarrow	-0.085	-0.09	-0.09	-0.09	
Fat Yield		0.96	0.92	1.09	1.26	
Protein Yield		5.36	6.05	6.48	6.91	
CIV		-10.87	-11.83	-11.9	-11.97	
Survival		10.51	10.31	10.74	11.17	
Direct CD		-3.26	-3.56	-3.6	-3.65	
Maternal CD		-1.73	-1.73	-1.73	-1.73	
Gestation		-6.8	-7.5	-7.5	-7.5	
Calf mortality		-2.85	-2.85	-2.85	-2.85	
Cow Wt		0.04	-0.51	-0.51	-0.51	
Carcass weight		1.38	1.38	1.38	1.38	
Carcass conformatio	n	10.32	10.32	10.32	10.32	
Carcass fat		-11.71	-11.71	-11.71	-11.71	
Somatic cell count		-55.48	-56.42	-56.89	-57.21	
Locomotion		1.13	1.13	1.13	1.13	


Cull cow

- Revenue \rightarrow more carcase and higher price
 - No change
- Feed costs based on land limiting
 - − Costs → growth & maintenance
 - Feed costs increased to €176/tDM
 - Feed costs €0.163/UFL
- Old economic weight = + €0.04
- New economic weight = -**60.513**

Relative emphasis – 28 c/l


Impact on sire-proofs (n=2100; 28c/l)


Top 75 bulls – 28 c/l

Trait	Mean	Minimum	Maximum	
Milk Yield	54	-445	637	
Fat Yield	10	-10	26	
Protein Yield	6	-9	21	
CIV	-4.6	-8.7	-0.1	
Survival	2.6	0.6	6.8	
Direct CD	-3.8	-5.2	1.4	
Maternal CD	4.6	-2.1	10.1	
Gestation	-1.6	-4.2	2.5	
Calf mortality	-0.5	-2.0	0.9	
Cow Wt	-3	-40	19	
Carcass weight	-4	-48	17	
Carcass conformation	-0.35	-1.17	0.75	
Carcass fat	0.02	-0.68	0.94	
Somatic cell count	0.01	-0.23	0.22	
Locomotion	-0.12	-2.10	2.14	

Relative emphasis – 30 c/l

Impact on sire-proofs (n=2100; 30 c/l)

Top 75 bulls – 30 c/l

Trait	Mean	Minimum	Maximum	_
Milk Yield	94	-445	637	
Fat Yield	11	-10	26	
Protein Yield	8	-5	21	
CIV	-4.3	-8.7	-0.1	
Survival	2.5	0.0	6.8	
Direct CD	-3.8	-5.2	1.4	
Maternal CD	4.6	-2.1	10.1	
Gestation	-1.6	-4.2	2.5	
Calf mortality	-0.6	-2.0	0.9	
Cow Wt	-3	-40	15	
Carcass weight	-4	-48	15	
Carcass conformation	-0.39	-1.17	0.75	
Carcass fat	0.02	-0.68	0.94	
Somatic cell count	0.01	-0.23	0.22	
Locomotion	-0.13	-2.10	2.14	

Feed costs

- Concentrate at €250/tonneDM or €0.223/UFL
- First cut grass silage costs €127/tonne DM or €0.158/UFL
- Second cut grass silage costs €142/tonne DM or

€0.184/UFL

• Maize silage costs €130/tonne DM or €0.163/UFL

Sensitivity around feed costs

Sensitivity

- €125/t DM €0.116/UFL
- €150/t DM €0.139/UFL
- €175/t DM €0.162/UFL
- €200/t DM €0.185/UFL
- €225/t DM €0.203/UFL
- €250/t DM €0.231/UFL

Feed cost variation at 28c/l milk price

	Feed Input Costs €T	175	125	150	200	225	250
Yield	Protein	6.48	6.724	6.604	6.364	6.26	6.13
	Fat	1.09	1.604	1.355	0.858	0.610	0.361
	Milk	-0.09	-0.081	-0.086	-0.095	-0.099	-0.104
Fertility	Survival	10.74	12.13	11.46	10.17	9.45	8.776
	Calving Interval	-11.90	-8.64	-10.21	-13.37	-14.94	-16.52
Beef	Cow carcase wgt	-0.51	-0.151	-0.328	-0.667	-0.842	-1.011

Feed cost variation at 30c/l milk price

	Feed Input Costs €T	175	125	150	200	225	250
Yield	Milk	-0.09	-0.081	-0.086	-0.094	-0.099	-0.103
	Fat	1.257	1.772	1.523	1.026	0.777	0.528
	Protein	6.912	7.160	7.040	6.801	6.681	6.561
Fertility	Survival	11.17	12.56	11.89	10.55	9.880	9.210
	Calving Interval	-11.97	-8.71	-10.28	-13.44	-15.02	-16.59
Beef	Cow carcase wgt	-0.51	-0.151	-0.328	-0.667	-0.842	-1.011

Recommendation

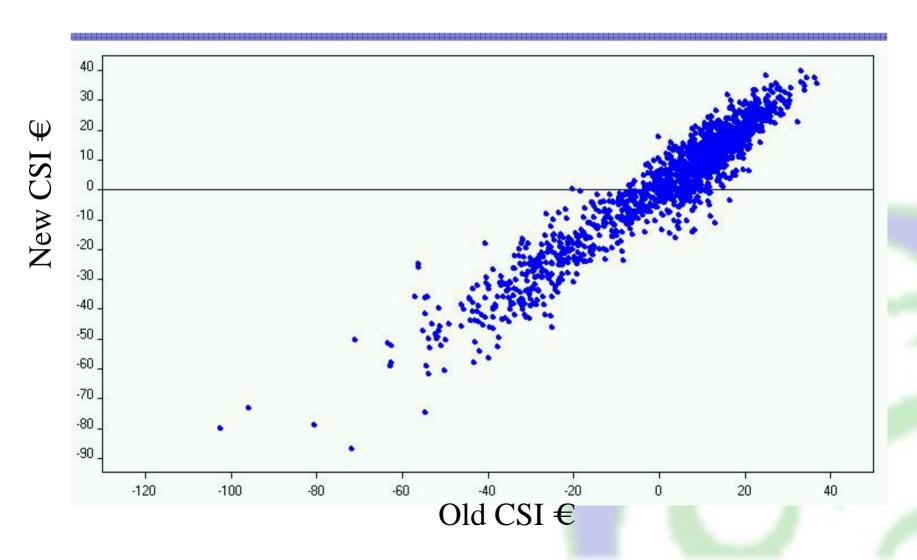
• Little effect on economic values

Economic value for live-weight is negative

28c/l milk price projection

Update feed costs

- Switching to new software and new model
- Include more data (>5th lact) and evaluations on both males and females
 - Increase reliability
- Also looking at heifers v later lactations


Means/Std Dev AI bulls

	CD	MCD	GEST	MORT	CSI
New	-1.69/3.3	2.4/2.4	-0.16/1.99	-0.07/0.6	2.6/19
Old	-1.63/3.4	2.6/2.6	-0.17/1.86	-0.07/0.7	2.3/19

Correlation to previous proofs

CD	MCD	GEST	MORT	CSI
0.91	0.87	0.95	0.8	0.95

Reliability increased by ~15%

- Initial analysis of first vs later lactations
 - Correlation of 0.8
 - More work is need before any implementation
 - Genetic paramaters
 - Publication options?

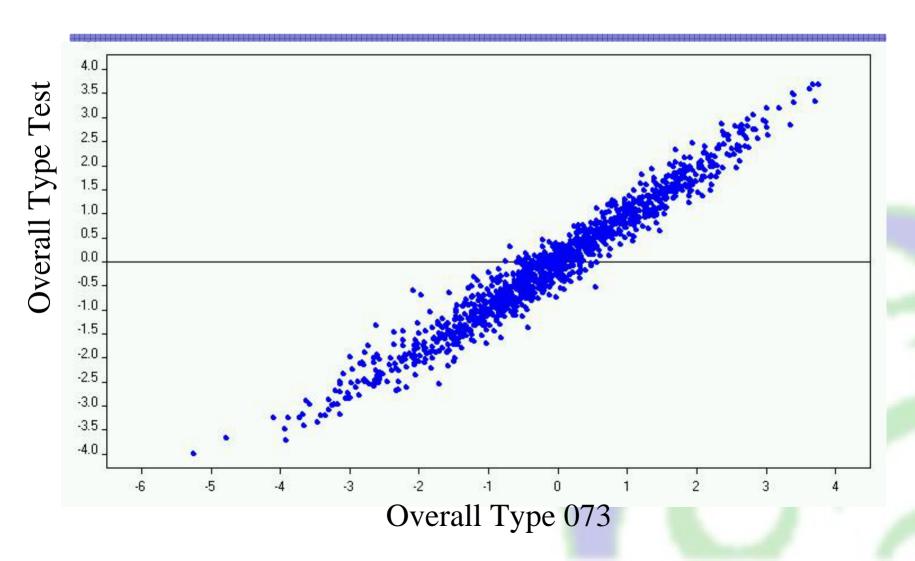
Publication

- Currently expressed as PTA with range from -6 to +30
- For beef decided to always express CD & MCD as positive figure
 - 6 added to PTA after subindex calculated
 - Inituitively easier to understand
- In order to be consistent, propose to do the same with the dairy proofs
 - Easiest calving bulls would be around 0%
- Con in order to construct calving SI need to subtract 6 from CD and MCD before applying economic value

Summary

- High correlations
- Higher reliabilty
- Software provides much technical & opertational advantages

Recommendations


- Move to new software for evaluation
- Add 6 to PTA for CD and MCD
- Continue work on 1st v later parity
- Participate in Interbull as soon as possible

New definition of Overall Type

	Dairy	Feet & Legs	Mammary	Rump	Body
	Strength				
Old TM	25	25	40	10	0
New TM	0	35	40	0	25

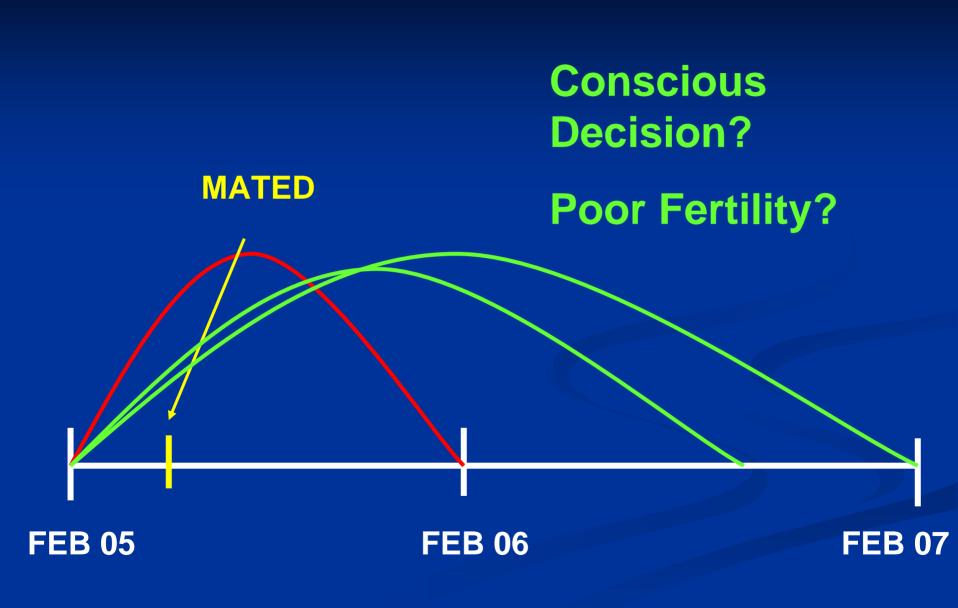
Body = 0.974*STA + 0.184*CW - 1.060*BD - 0.545*ANG - 0.167*RA - 0.335*RW

- More emphasis on Feet & Legs
- · Less on angularity & body depth
- Overall correlation 0.98
- See handout for individual bulls

- New Irish base & scale also being investigated
- Based on bulls born 1989 to 1998 with
 - At least 20 Irish scored daughters or
 - At least 20% of daughter are Irish
- · Results only obtained yesterday
- Too early to implement

- Recommendation
 - Move to new definition of overall type
 - Continue to investigate new base and scale

Roll-out of proofs.

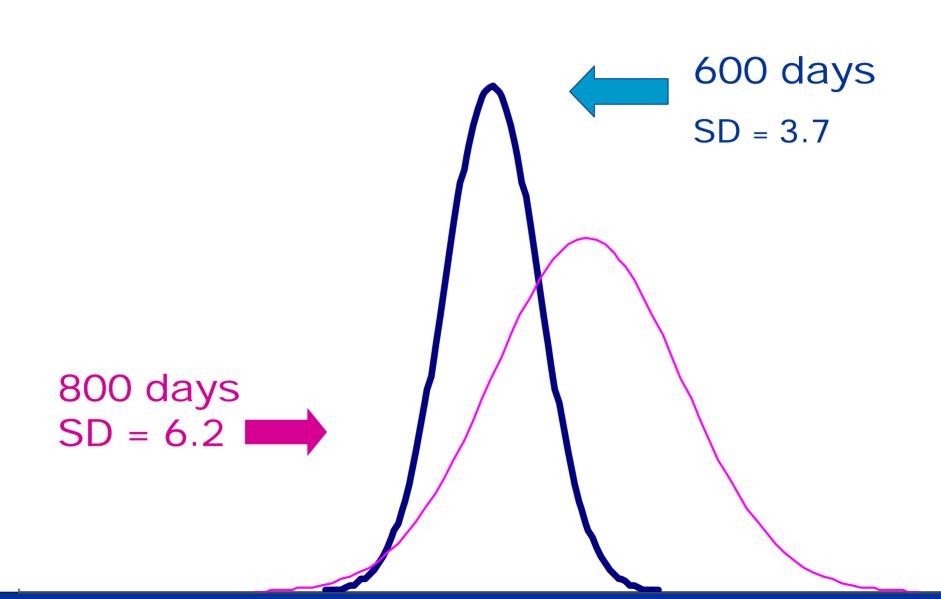

- Agree proposed changes today.
- · Recommendations to ICBF board.
- Plan for official proof release;
 - Interbull evaluation December 07
 - Further domestic evaluation (all traits) –
 January 07
 - Official proofs ~ 25th January 2008.

Fertility evaluations

Kate Twomey

Objective

To use insemination data to identify cows that were bred in an attempt to calve within a year


Data

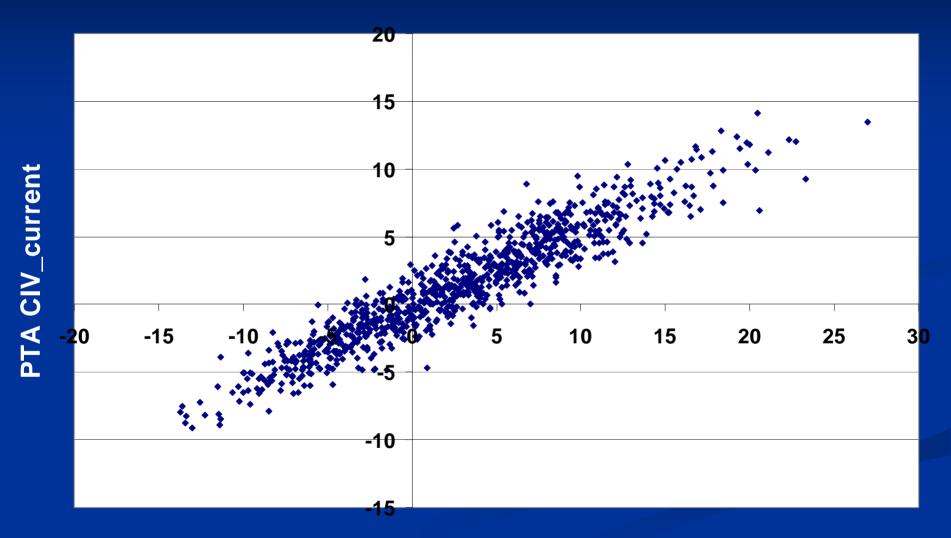
- Data used were that included in national genetic evaluations
 - Parity 1 to 3
- Current situation
 - Calving interval >600 set to missing
- Proposal
 - If inseminated <150 days then include calving interval up to 800 days
 - If no insemination data or inseminated >150 then include data up to 600 days

Calving interval records

Parity	1	2	3
Current	805762	649783	502161
New (also including data between 600 and 800 days)	834794	671959	517301
Diff.	29032	22176	15140

Impact of edit on sire variation

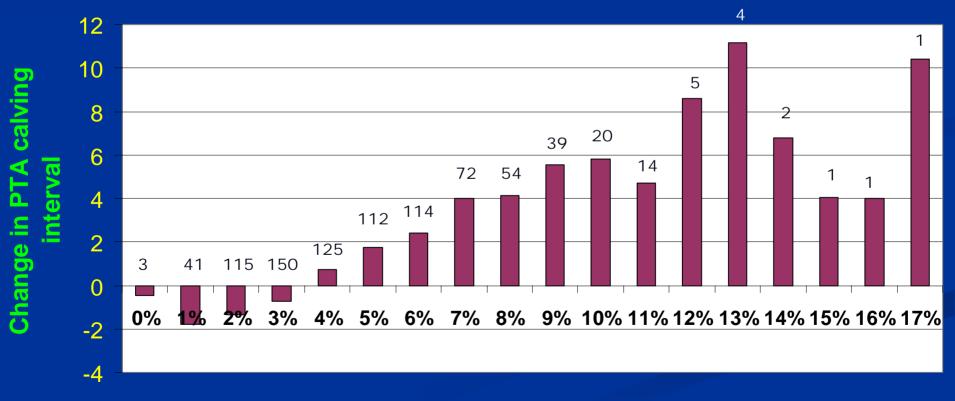
Correlations between current CIV proofs and after edit


Correlation between all animals:

- Lactation 1 = 0.94
- Lactation 2 = 0.95
- Lactation 3 = 0.94

Correlation between AI sires:

- Lactation 1 = 0.93
- Lactation 2 = 0.94
- Lactation 3 = 0.93


Sire proofs Current CIV proofs v. new CIV proofs

PTA CIV_new

Change in sire CIV PTA

Lactation 1 (similar results for lactation 2 & 3) Sire with >100 daughters (n=873)

Proportion of calving interval data between 600 and 800 days

Conclusions

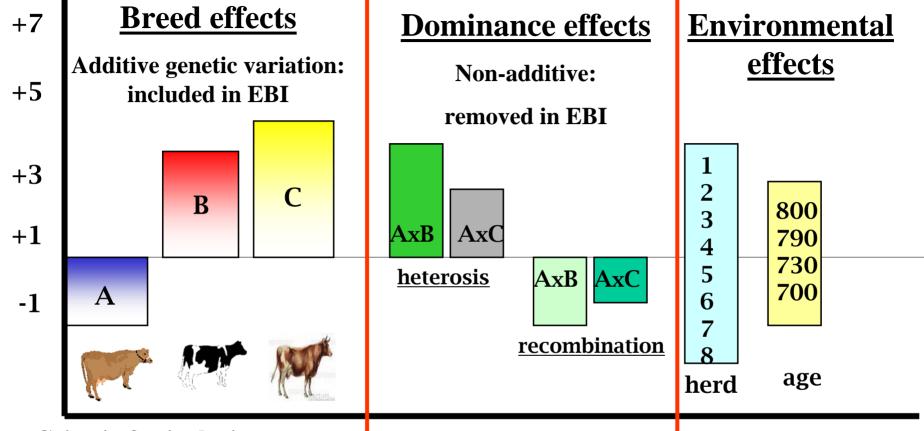
- 3% more data by including data between 600 and 800 days
- EBVs more reflective of reality penalises lower fertility bulls
- Future work use calving to first service in multi-trait analysis

Update on heterosis and handling of breeds in evaluations

Teagasc, Moorepark 23th November 2007

Background

- Evaluations are now across breed for all traits
- Increase in numbers of predominant breeds and crosses between these breeds
- Differentiation of heterosis in different crosses
- Handling of minority breeds, grouping of breeds
- Previous meeting: Issue of how to handle missing fractions on animals
- Specific case of IHFA grade up herds
 - Action: examine the consequences of updating animals to all available breed information


																	12 15	W.		MI.	
-	JIM D	BALL' E-XRJZ-	0113-X JNTY			Herd:	IE331	0189 ree Ind	50 25 25	Fema % Purel % Holst % Fries	ored Re	egistration rade: A	n ASR		Goes fr						
reeder: BALLYKINASH CARRIG BIRR CO TIPPERARY 050922119 of issue: 22-NOV-2007						tic Mer Rel. 45		30-SEP BF 10.5 CI Days -3.3	Ptn 6.0	BF% 0.18 O FL -1.1	Ptn% 0.09 O M/ -1.5		IE-X Born:	RJ	Z-0	113					
	DA TOF						JUDI	TER 1	61					1121	JONICAAN 1	37					
Merit (6331 PD)	9578265 30-SEP-2			41000007000	100% FR	637036 Genetic	88756 Merit (P	D) 30-SE	P-2007		- Carraina		00% FR	63001013235 EBI Rel. 16 10	Milk kgs -132	BF kgs -4.0	Ptn kgs -2.0	Surv%	CI Days	100%
Rel. 97	Milk kgs -72	BF kgs 0.0	Ptn kgs 1.5	BF% 0.06	Ptn% 0.08		8 BI	Rel.	Milk kgs -117	BF kgs -5.0	Ptn kgs -1.0	BF% -0.01	Ptn% 0.06		NAATJE 323						
	Surv% 2.0	CI Days -4.2	O TY -2.4	O FL -1.1	O MA -1.9				Surv% 1.6	CI Days -5.7	OTY	OFL	O MA		63700039944 Body Dair Lifetime production Lact.		L&F Fat kgs 1442	Mam Ptn kgs 1217	BF% 4.02	Ptn% 3,39	100% Days 1214
							633 156	NKE 3 29622 Merit (P		EP-2007 Fat kgs	Ptn kgs	BF%	Ptn%	00% FR Days	HOLWERDA 63311711211 EBI Rel. 61 23	AMARO Milk kgs -338	DZ BF kgs -4.0	Ptn kgs -6.0	Surv%	CI Days	100%
							1 2 3	production	6448 8020 9607 on	297 350 428	230 277 330	4.61 4.36 4.46	3.57 3.45 3.43	305 305 305	H JANKE 374 63313211922 Body Dain Lifetime production Lact.	y Milk kgs	L&F Fat kgs	Mam Ptn kgs	BF%	Ptn%	100% Days
						0		EA NIE	24075	1075	837	4.47	3.48	EX 90	Proposition and the second	23977 RMS NI	FD BOY	816	4.48	3.40	915
Z-0008-) D	airy 0	L&F 0 30-SEP-2	Mam ()	1	75% HO 2.5% FR	DAY Genetic	Merit (P	D) 30-SE	542590 EP-2007	Die kee	DE0/	1	00% HO	6501806201 EB Rel.	Milk kgs 321	BF kgs 10.5	Ptn kgs 11.5	TL 1 Surv% -0.9	CI Days 3.0	100%
Rel.	Milk kgs	BF kgs	Ptn kgs	BF%	Ptn%		EBI 73	Rel. 98	Milk kgs 168	BF kgs 7.5	Ptn kgs 6.0	BF% 0.02	Ptn% 0.01		HEIDEMARIE						EX 100%
43	112	12.0	5.0	0.15	0.03		F		Surv% 0.1	CI Days	OTY	O FL -1.7	O MA -0.7		6001-80538 Body Dair Lifetime production		L&F	Mam			100%
	Surv% 1.2	CI Days	O TY -1.3	O FL -1.1	O MA		_6 L		0.1	-2.7	-0.8	-1.7	-0,7		Lact.	Milk kgs 31754	Fat kgs 1425	Ptn kgs 1049	BF% 4.49	Ptn% 3.30	Days 1220
	Milk kgs	Fat kgs	Ptn kgs	BF%	Ptn%	Days								1140							
	4879 4717 6328	204 189 266	174 167 229	4.17 4.01 4.20	3.56 3.53 3.61	285 225 286	Body Genetic	Dairy	L&F D) 30-SE	Mam P-2007				75% HO	EB Rel.	Milk kgs	BF kgs	Ptn kgs	Surv%	CI Days	
	5896 7672	248 322	214 291	4.20	3.63 3.79	229 290	Lact. 3		Milk kgs 4908 4941	Fat kgs 217 217	Ptn kgs 169 171	BF% 4.42 4.39	Ptn 3.45 3.45	251 245							
e produc	tion Milk kgs 29492	Fat kgs 1228	Ptn kgs 1074	BF% 4.16	Ptn% 3.64	Days 1315	5 6 7		5630 6071 5697	258 246 232	198 214 195	4.59 4.05 4.07	3.51 3.53 3.43	275 299 265	Lact.	Milk kgs	Fat kgs	Ptn kgs	BF%	Ptn%	Days
							ALCOHOLD STATE	producti		1374	1113	4.30	3.48	1578	Lifetime production						
decem						-	-														

Breed update: impact on categories of fractions known

	Before	After	Extra
All Animals in CIS Evaluation	1,147,199	1,147,199	
>66% of Breed Fraction Known	838,419	852,980	14,561
>75% of Breed Fraction Known	833,196	848,089	14,893
>87.5% of Breed Fraction Known	557,360	615,798	58,438
100% of Breed Fraction Known	373,350	377,465	4,115
			92,007

- These animals are updated for genetic evaluations
- · 3 weeks to run breed fix on 12 million animals, done once a year
- Not updated on certificates or ICBF reports

New Fertility Model

Criteria for inclusion

Breed is represented by at least 500 animal equivalents: i.e. 500 purebreds or 250 Purebreds + 500 F1 crosses Remaining breeds are grouped

Criteria for inclusion

At least 500 crosses between 2 breeds At least 100 herds with combinations of 1 or other purebreds and crosses Other crosses grouped

Criteria for inclusion

Current age and herdyear season rules will remain the same

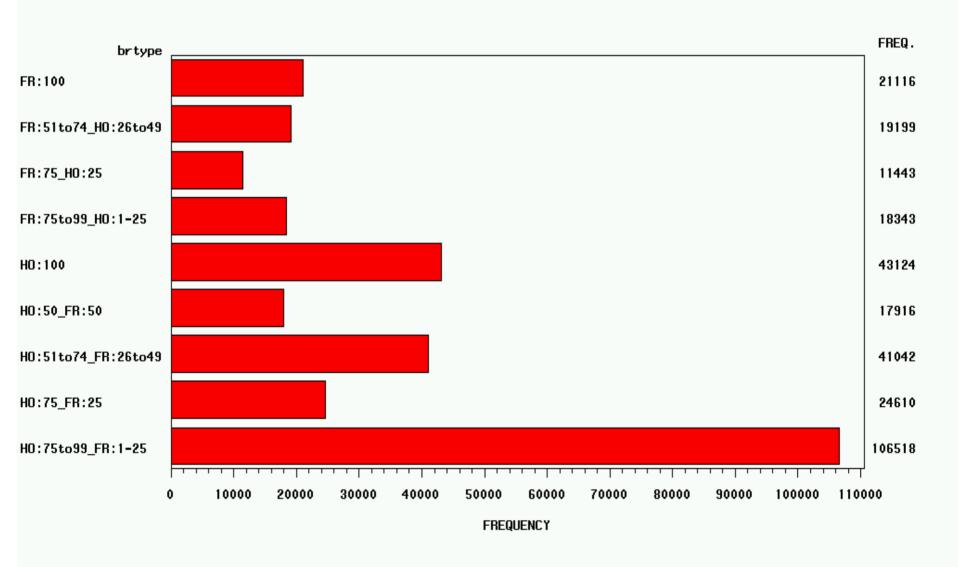
Additive Breed Effects As handled in fertility evaluation

			Proposal based on sum of all		
Primary breed	count	Current Evaluation	fractions		
Holstein	839062	Holstein	Holstein	622308	
Friesian	280831	Red Holstein	Friesian	284054	
Montbeliarde	9264	Friesian	Montbeliarde	7013	
Jersey	3301	Montbeliarde	Jersey	2486	
Meusse Rhine Ijssel	2596	Jersey	Meusse Rhine Ijssel	2172	
Rotbunte	2122	Meusse Rhine Ijssel	Rotbunte	1448	
Simmental	1737	Rotbunte	Simmental	1229	
Norwegian Red	899	Normande	Shorthorn	673	
Shorthorn	897	Brown Swiss	Norwegian Red	636	
Danish Red	692	Simmental	Ayrshire	438	
Ayrshire	576	Shorthorn	Normande	418	
Normande	573	Danish Red	Danish Red	369	
Brown Swiss	416	Ayrshire	Red Holstein	343	
Swedish Red	222	Norwegian Red	Brown Swiss	262	
Red Holstein	218	Swedish Red	Swedish Red	123	

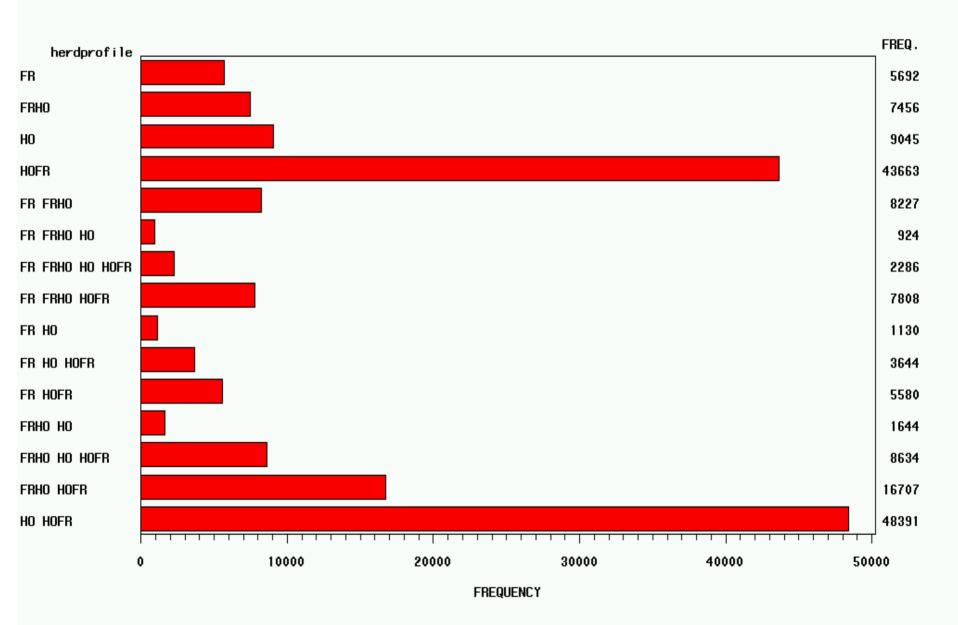
Non-Additive Dominance effects (Heterosis & recombination)

- Criteria for inclusion of specific crosses
- Determine level of crossing between breeds in the evaluation
 - Sufficient crosses between 2 breeds in evaluation HO100%

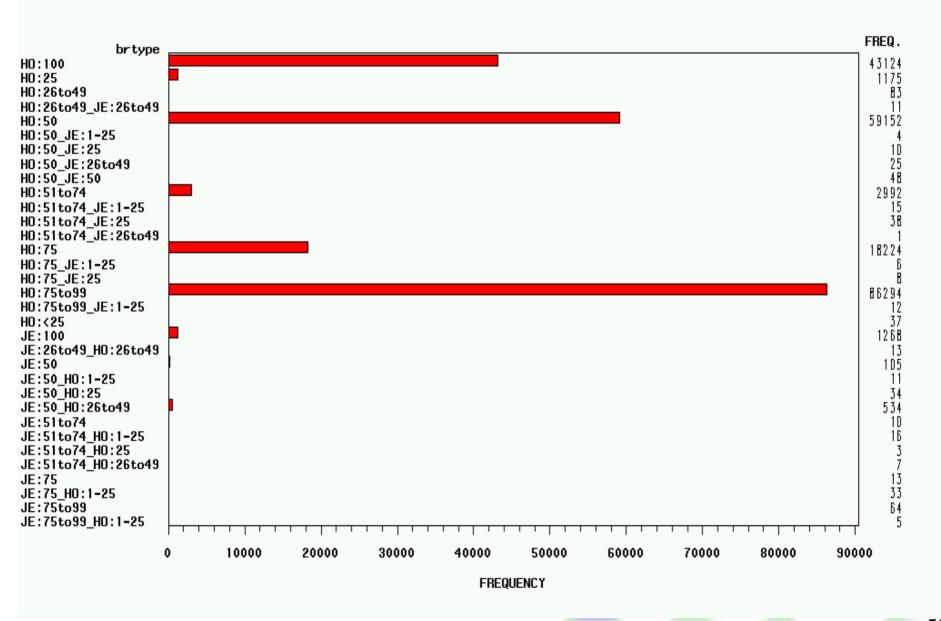
HO75% - FR25%

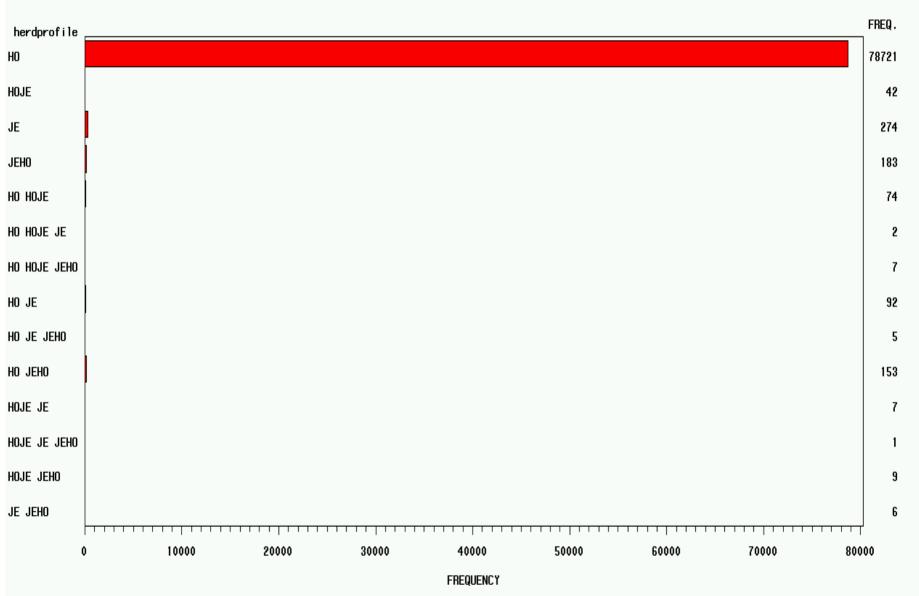

HO50% - FR50%

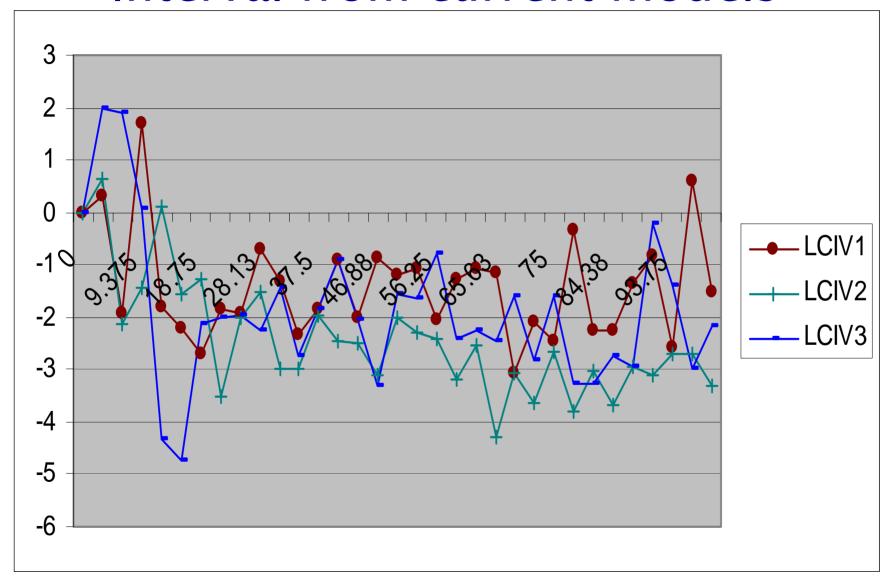
FR75% - HO25%

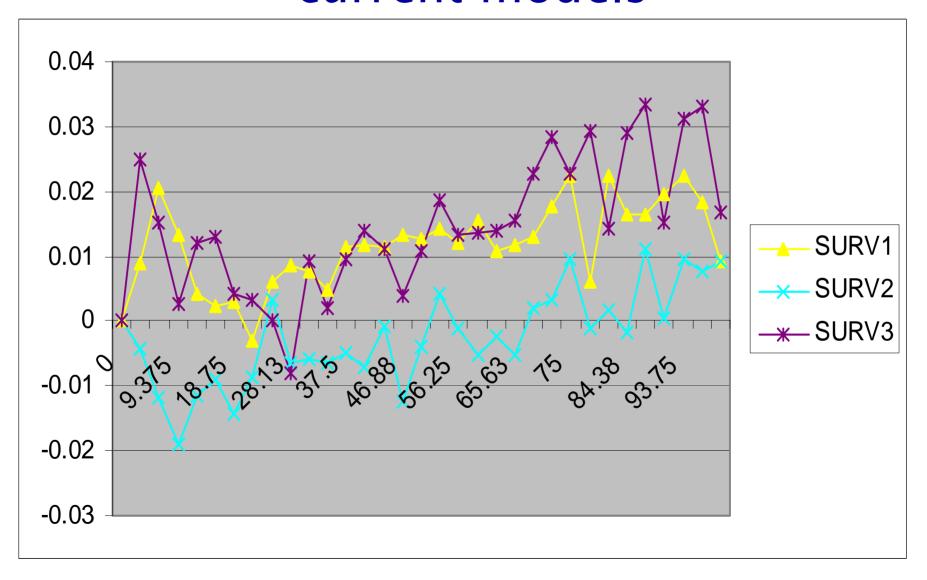

FR100%

 Herd-year-seasons with purebreds and crosses between two breeds gives best information


Holstein x Friesian crosses in CIS eval with full fraction known


Herd distribution with Holstein, Friesian and combinations in CIS eval


Holstein x Jersey crosses in CIS eval


Herd distribution with Holstein, Jersey and combinations in CIS eval

Effect of heterosis on Calving Interval from current models

Effect of heterosis on survival from current models

Next stage...

- Different evaluations have different breed representations e.g. calving, fertility, production, linear
- Establish full spectrum of breeds, crosses and herd linkage in each evaluation for each trait and implement cut-off
- Implement across all evaluations
 - Milk, fertility, calving beef, health
- Report back with test run results

Plan for next year.

- All changes to implemented by Interbull test run (September 2008)
 - Breeds & breed combinations (milk, CIS & calving traits).
 - CIS updates (e.g., insemination data and age at first calving).
 - Others?
- · Development work will start earlier next year (and in future years).
- Next meeting (proposed work areas for 2008) - Feb 2008.