

ICBF Dairy Industry Meeting; Update.

Teagasc, Moorepark 18th October 2007

1

Work Priorities.

- 1. Update the EBI LS & DB
- 2. Improve female fertility evaluations– DB
- 3. Beef Calf Quality DB
- 4. Update calving performance FK
- 5. Update linear type proofs FK
- 6. Manage inbreeding FK

Agenda

- 7. Across breed proofs RE
- 8. New indexes for farmer management traits AC
- 9. Culling Index On hold
- 10.Male fertility evaluations On hold
- 11.Roll-out of proofs.
- 12. Any other business.

7

EBI Development

Overview

- Review of 2007
- Update costs an prices projected
- Cull cow liveweight

Review 2007

- Quota to Land Limiting
- Protein to fat value increased from 2 to 1 to 2.7

to 1

EBI Development 2007

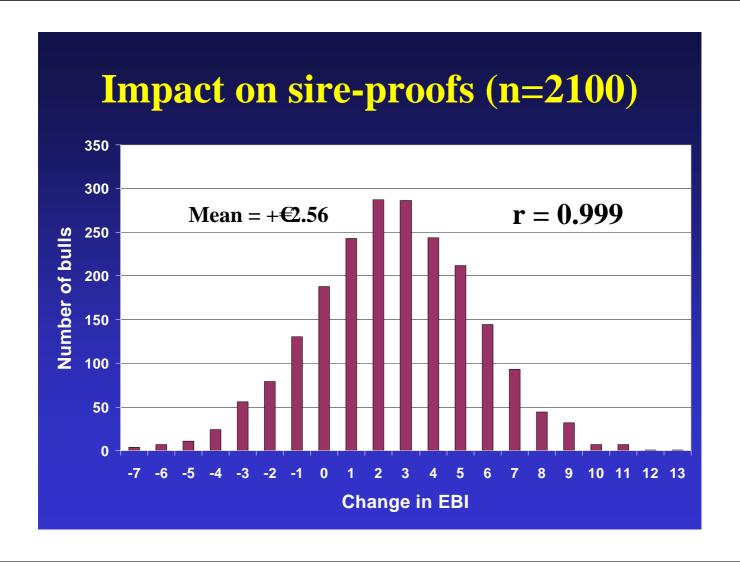
- Land
 - Largest constraint in the future
 - Movement of land will affect the possibilities for expansion
- Labour
- Capital

Update all costs and prices

Methodology – Production and Fertility

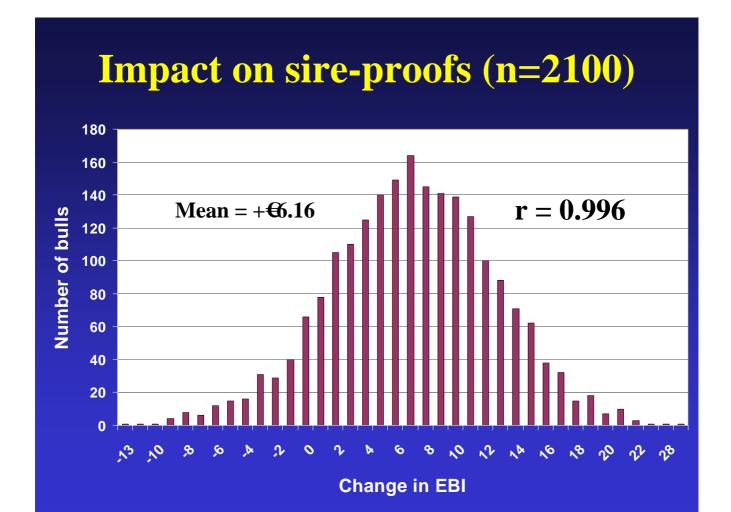
• EV's where land is limiting with ratio of protein to fat of 2.6 to 1 with feed options

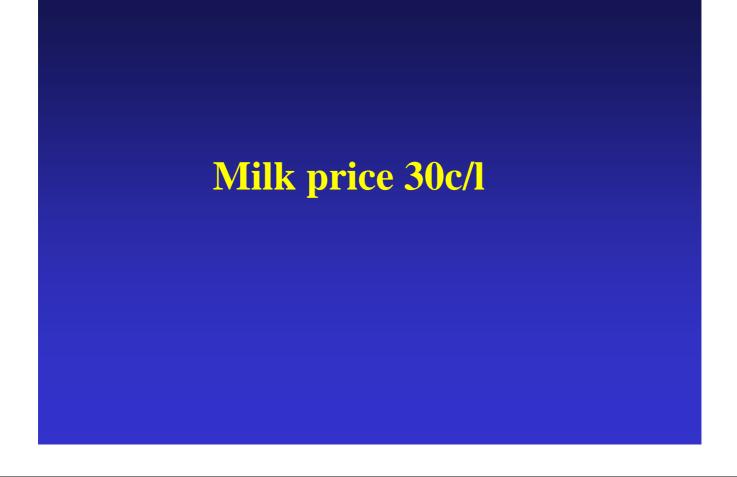
Update all costs and Prices

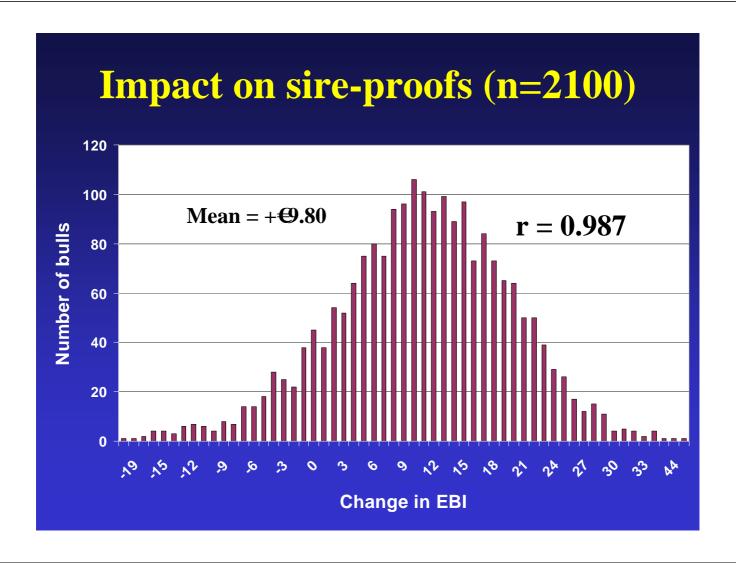

- Many changes have occurred to predicted prices in 2007;
 - Milk price
 - Grain price
- Some of reasons for these changes;
 - Biofuels
 - Global warming Australia
 - Demand for dairy products

Assumptions for 2008

- All costs and prices
- Concentrate costs at €250/tonne
- Opportunity cost of land €500/Ha
- Milk price
 - -26c/1
 - -28c/1
 - -30c/1


Milk price 26c/l

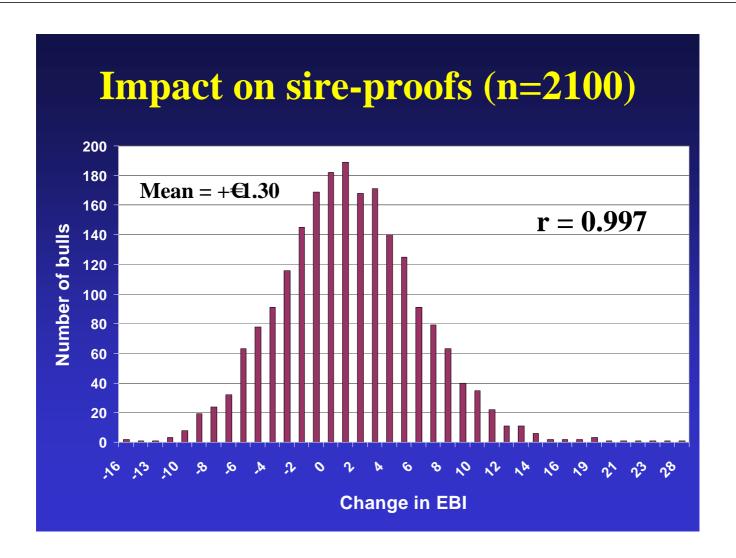

		Spring (Feed input)
ield	Protein	6.05
	Fat	0.92
	Milk	-0.09
ertility	Survival	10.31
	Calving Interval	-11.83
Calving	Maternal	-1.73
	Direct calving	-3.26
	Direct gestation	-4.47
	Calf mortality	-2.58
eef	Cow carcase wgt	0.04
	Carcase weight	1.40
	Conformation	10.32
	Fat score	-11.79
lealth	Locomotion	1.13
	Udder	-55.48


Milk price 28c/l

		Spring (Feed input)
Yield	Protein	6.48
	Fat	1.09
	Milk	-0.09
Fertility	Survival	10.74
	Calving Interval	-11.90
Calving	Maternal	-1.73
	Direct calving	-3.26
	Direct gestation	-4.47
	Calf mortality	-2.58
Beef	Cow carcase wgt	0.04
	Carcase weight	1.40
	Conformation	10.32
	Fat score	-11.79
Health	Locomotion	1.13
	Udder	-55.48

		Spring (Feed input)
ield	Protein	6.91
	Fat	1.26
	Milk	-0.09
ertility	Survival	11.17
	Calving Interval	-11.97
alving	Maternal	-1.73
	Direct calving	-3.26
	Direct gestation	-4.47
	Calf mortality	-2.58
eef	Cow carcase wgt	0.04
	Carcase weight	1.40
	Conformation	10.32
	Fat score	-11.79
ealth	Locomotion	1.13
	Udder	-55.48

Calving Interval


	365	366
	€	€
Receipts	1956.4	1955.8
Costs	1802.5	1813.9
Net	153.9	141.9

Cull cow

- Revenue \rightarrow more carcase and higher price
 - No change
- Feed costs based on land limiting
 - − Costs → growth & maintenance
 - Feed costs increased to €176/tDM
- Old economic weight = +€0.04
- New economic weight = -€0.513

Summary cost and price update

- Little effect on economic values
- Economic value for live-weight is negative
- 26c/l milk price projection
- Update feed costs

Conclusions

- EBI continually developing
- EBI 2007 based on land being the limiting constraint at farm level rather than milk quota
- Costs and prices updated

Preliminary genetic evaluation of female fertility in Ireland

Current situation

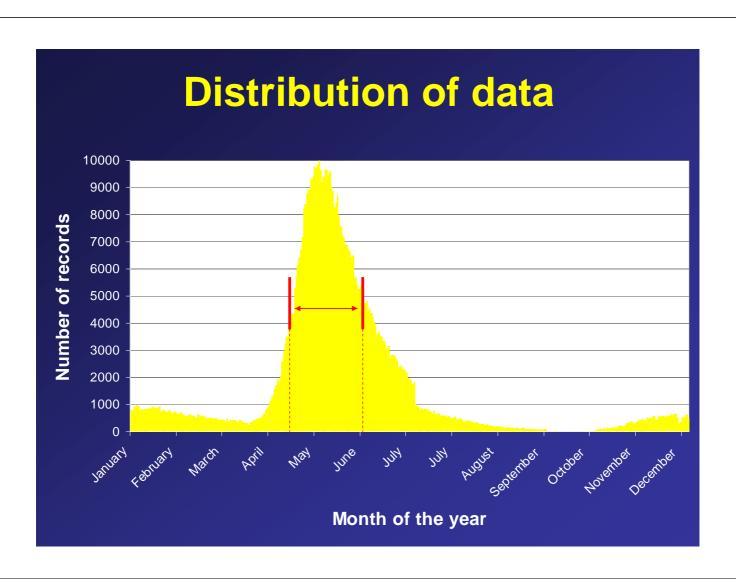
- Legally required to record dam ID and date of birth
 - Calving interval
- Survival
 - To account for non-reappearance
- 14-trait analysis
 - Milk yield
 - Calving interval
 Parities 1 to 3

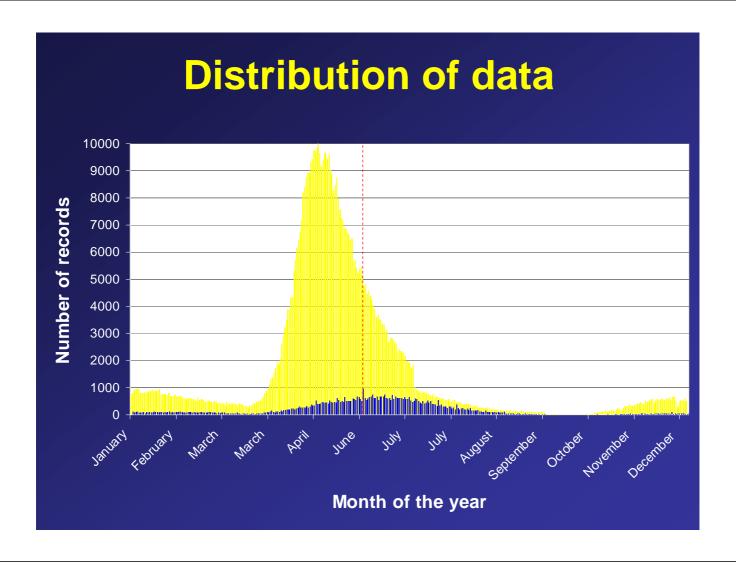
- Survival
- BCS, ANG, FA, UD, LSP

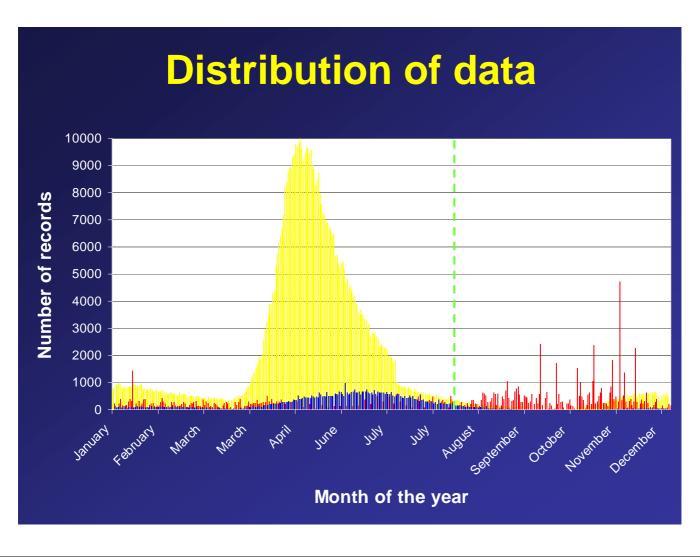
Future situation

- 2005 breeding charts
- 2006 electronic handhelds piloted by some technicians
- >2007 electronic handhelds with all technicians

Objective


- To quantify the potential usefulness of the insemination data
 - Trait definitions
 - Models of analysis
 - Degree of genetic variation
 - Genetic correlations
 - Use in editing criteria


Data


- 790,452 Al records
- 85,500 natural mating records
- 128,141 pregnancy diagnosis
- 618,119 lactations
- 453,500 cows
- For age at first calving 100,585 records

Edits

- Dairy animals >75% Holstein-Friesian
- Only meaningful service dates
- Herd-years >20 records
- Contemporary groups >5 records
- AFC only animals calving in the same herd as born

Fertility traits - cows

- 1. Calving to first service interval (CFS)
 - Between 10 and 250 days
- 2. Days open (DO)
 - Calving to last mating interval
 - Only in herd-years with >10 weeks breeding
 - If negative PD then set to missing
- 3. Number of services
 - Only in herd-years with >10 weeks breeding

Fertility traits - cows

- 4. Submission rate (SR21)
 - Start of breeding season was where 3
 lactating cows were inseminated within 10
 days
 - No cognisance of calving date
 - SR21_35 cows had to be calved 35 days by start of breeding season

Fertility traits - cows

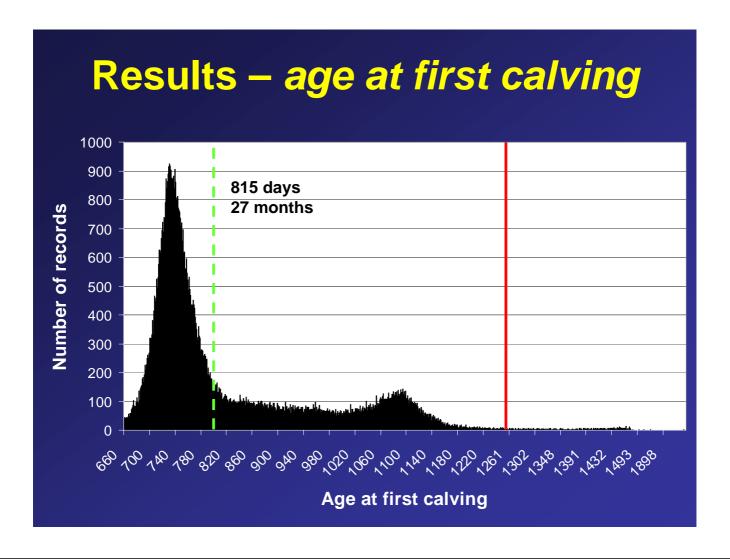
5. Non-return 56 (NR56)

- Non-return to 1st service
- Set to zero
 - Second service within 56 days
- Set to missing
 - Served within 56-days of last AI service / date of culling / date of death
- NR56_valid validated using subsequent calving dates where available

Fertility traits - cows

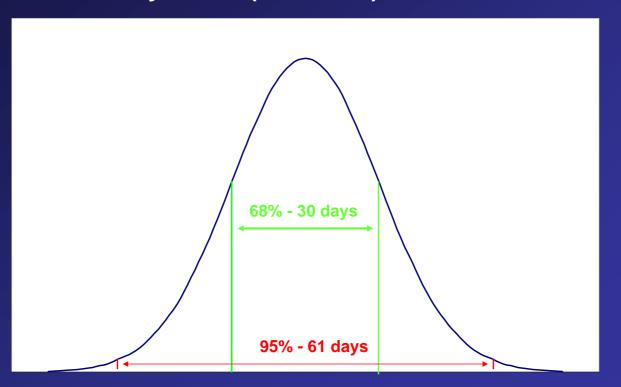
6. Pregnancy rate to first service (PRFS)

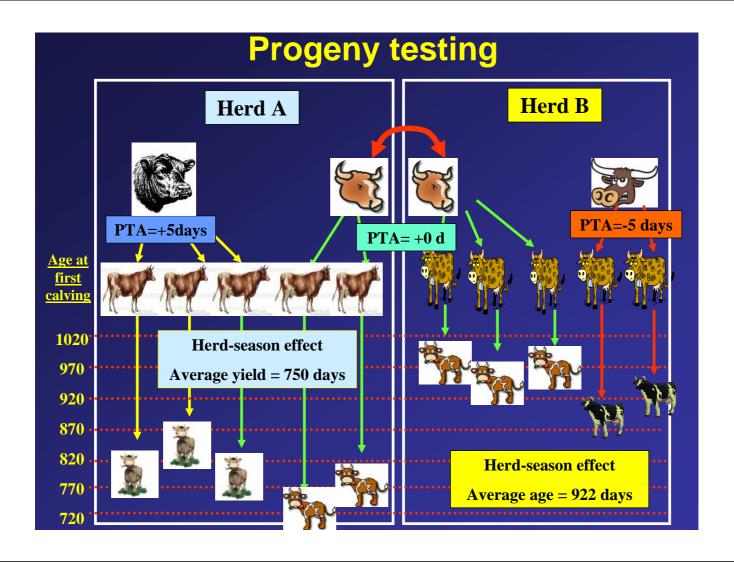
- Set to zero
 - Second service
 - Scanned not in calf
- Set to missing
 - Served within 30-days of last AI service / date of culling / date of death
- PRFS_valid validated using subsequent calving dates where available

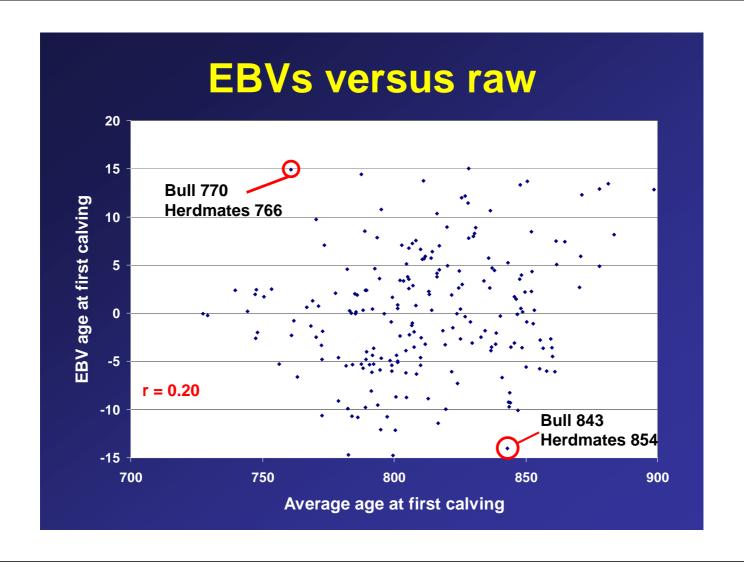

Fertility traits - heifers

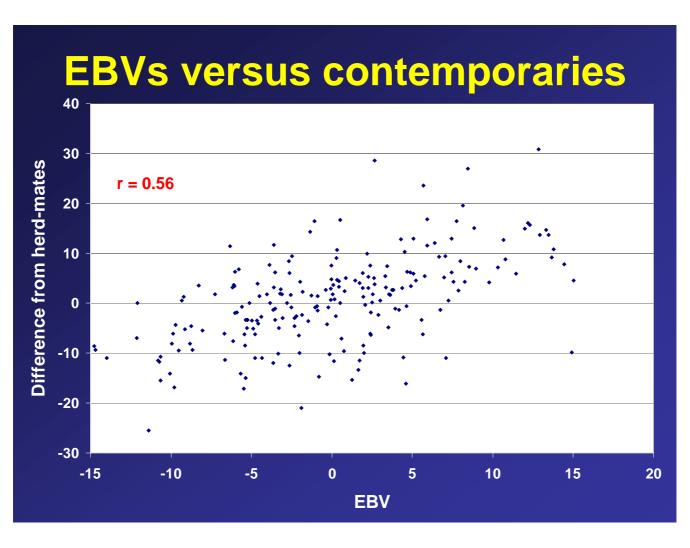
- 1. Age at first calving (AFC)
 - 600 and 1260 days
- 2. Age at first service (AFS)
 - 365 and 500 days
- 3. NR56
- 4. PRFS

Analysis


- Series of single-trait animal linear model
- Fixed effects
 - Contemporary group of birth / calving
 - Cow Holstein, Friesian and "other" breed proportion
 - Heterosis and recombination loss
 - Year-month of service
 - Service sire status
 - Heterosis and recombination of mating
 - Calving to first service interval
- Random effects


Binary traits


• Heritability - 0.03 (SE=0.006)



Results – age at first calving

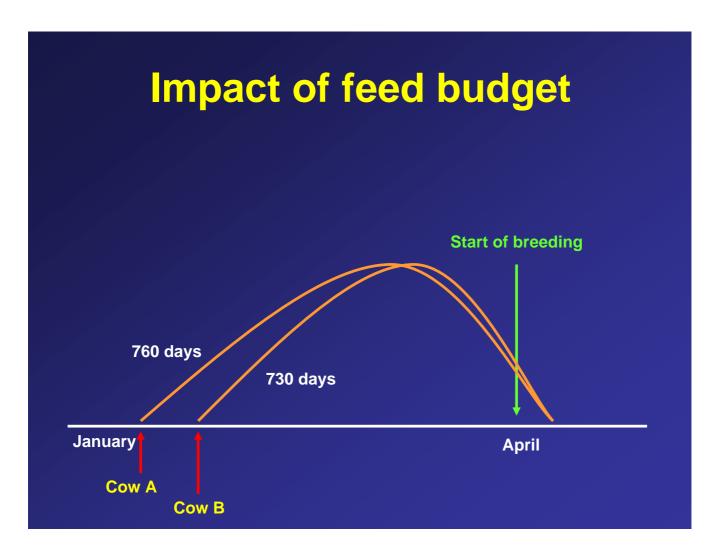
	1	2	3
Milk yield	-0.23	-0.32	-0.26
Calving interval	0.46	0.16	0.38
Survival	0.62	0.34	0.28
Body condition score		-0.44	
Angularity		80.0	
Foot angle		0.35	
Udder depth		0.52	

Results							
Trait	Parity	Mean	h ² SE				
AFS	0	447	0.16 (0.023)				
	1	75	0.019 (0.0060)				
CFS	2	73	0.012 (0.0057)				
	3	71	0.021 (0.0097)				
	1	90	0.008 (0.0041)				
DO	2	87	0.010 (0.0052)				
	3	84	0.012 (0.0165)				
	1	1.4	0.004 (0.0028)				
NS	2	1.5	0.008 (0.0049)				
	3	1.4	0.007 (0.0053)				

Results							
Trait	Parity	Mean	h² SE				
	1	0.43	0.004 (0.0043)				
NR56	2	0.39	0.006 (0.0064)				
	3	0.40	0.000 (0.0000)				
	1	0.57	0.001 (0.0023)				
PRFS	2	0.55	0.012 (0.0070)				
	3	0.56	0.009 (0.0076)				
	1	0.75	0.008 (0.0040)				
SR21	2	0.75	0.014 (0.0064)				
	3	0.74	0.021 (0.0098)				

Conclusions

- Significant genetic variation in age at first calving
 - Goal trait
 - Predictor trait
- Genetic variation in other fertility traits but large standard errors
- Potential as predictor traits for calving interval and survival


Economic value

Economic value

- One day longer maintenance
- May be heavier throughout lifetime??
- Impact on subsequent performance
 - Milk production
 - Fertility
 - Survival
 - Calving difficulty
- Impact on feed budget by shifting calving pattern

Longer to maintain

- 1 day extra maintenance
- Average live-weight = 450 kg
- UFL system
- All imported feed
- €176 / ton DM
- €0.8017 / day * 0.3146 (CDE)

Impact on feed budget

- Based on average scenario
- Changes calving pattern
- Increases feed cost
- €0.648 / day * 1 (CDE)

Economic value

- Maintenance → €0.252
- Shift in calving → €0.648
- Economic weight → €0.90 / day

Mart calf drop data edits

- Contemporary group 5 animals or greater
- Calves up to 42 days of age
- Price per calf available, no calf weight
- Sold as individuals
- Years 2002 to 2006 (some 2007 but not many young calves at time of data extract)

Dropped calf prices from mart data 2002 - 2006

Breed	Raw (HO dam)	No	Price effect	Std Err	No	No/yr
FR	168	1453	-57	4	4199	907
НО	160	20108	-70	3	51068	12064
JE	89	209	-215	9	199	62
MO	228	210	41	6	557	156
AA	210	4144	37	4	8601	2425
ВВ	297	1590	208	5	2541	494
СН	284	257	290	5	1458	307
LM	237	548	150	5	2084	514

4. Calving Performance

- Switching to new software and new model
- Include more data (>5th lact) and evaluations on both males and females.
- · Also looking at heifers v later lactations.
- · Evaluations just complete & analysis currently underway.
- Full update at next meeting.
- Interbull test-run April '08 International proofs August 08

5. Linear Type Proofs

New definition of Overall Type

	Dairy Strength	Feet & Legs	Mammary	Rump	Body
Old TM	25	25	40	10	0
New TM	0	35	40	0	25

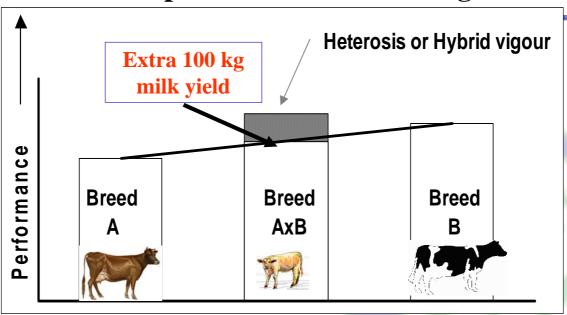
Body = 0.974*STA + 0.184*CW - 1.060*BD - 0.545*ANG - 0.167*RA - 0.335*RW

- More emphasis on Feet & Legs
- · Less on angularity & body depth
- · Overall correlation 0.95
 - GMI 0.10 to 0.29
 - RUU 0.04 to 0.23

59

Linear Type Proofs

- Interbull test run results just back
- · Little changes expected
- 2 new traits have just completed Interbull test run – Locomotion & BCS
 - Inclusion in routine evaluations to be decided
 - Useful for foreign bulls;domestic evaluations in place
- Interbull pilot study commenced on milking speed & temperament
- New Irish base & scale also being investigated


6. Managing Inbreeding

- Short-term avoid inbreeding at herd level
 - Sire advice will help farmers avoid close mating of relatives
 - AI handheld have capability to prevent mating close relative
 - Producing potential future inbreeding values for bulls as indication of their relatedness to population
- Long-term control inbreeding at breeding scheme level
 - G€N€ Ireland progeny testing

61

7. Heterosis or Hybrid Vigour

= extra kick in performance from being crossbred

But different breed crosses could have different heterosis!

62

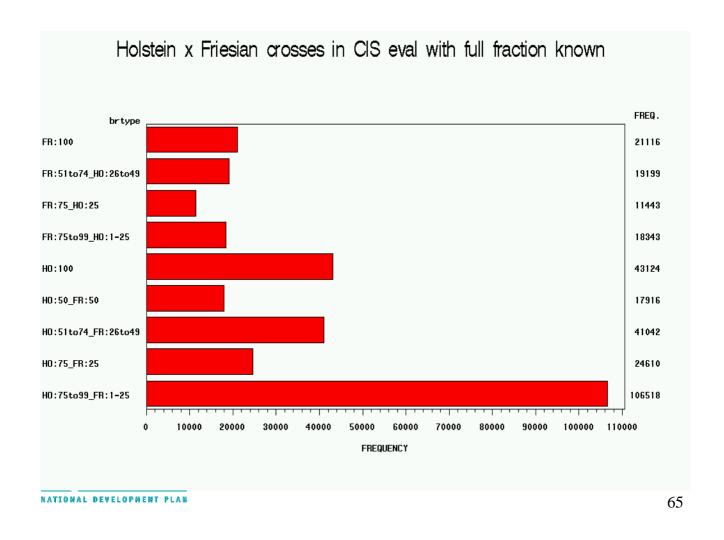
Example: current Fertility evaluation

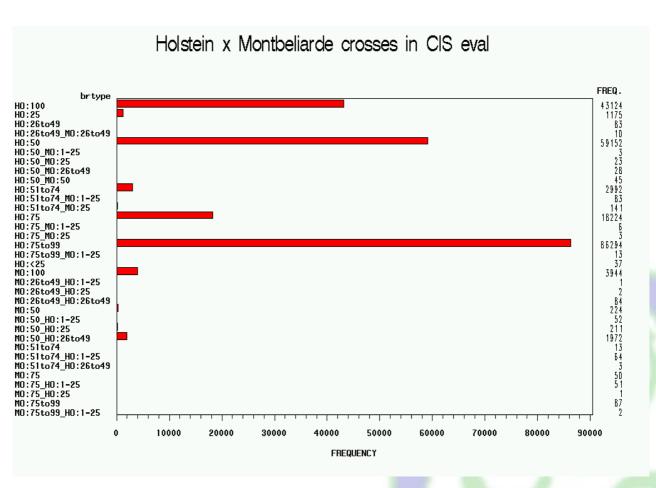
All animals in CIS evaluation	1147199
>66% of Breed Fraction Known	838419
>75% of Breed Fraction Known	833196
>87.5 of Breed Fraction Known	557360
100% of Breed Fraction Known	373350

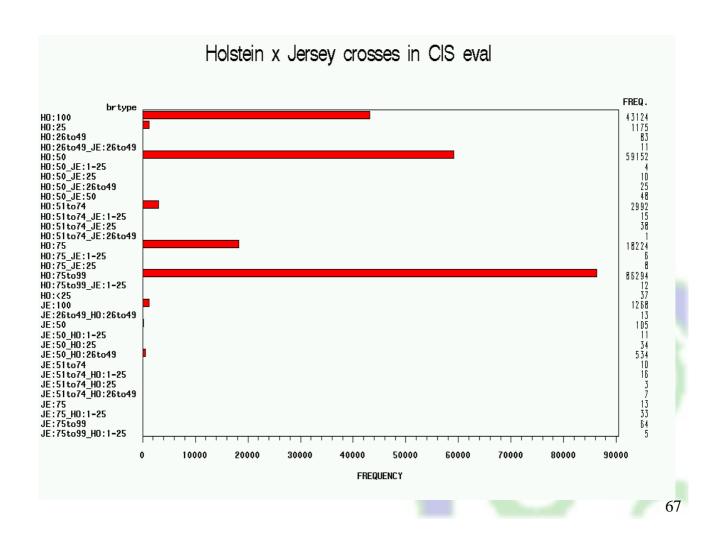
- To account fully for heterosis we need full fractions known on the sire and dam of the animal in the evaluation
- Current fertility evaluation estimates heterosis for all animals by creating an UNKN breed and categorising the animals into known breed fractions in the evaluation
- · Current milk evaluation (run in NRS) calculates heterosis using only the known breed fraction on the animal.

Fertility evaluation

		ani	mal			si	re			da	ım	
ANIMAL	но	FR	МО	JE	НО	FR	MO	JE	НО	FR	MO	JE
1	32	0	0	0	32	0	0	0	32	0	0	0
2	0	16	16	0	0	0	32	0	0	32	0	0
3	16	0	0	16	32	0	0	0	0	0	0	32
4	8	8	0	16	0	0	0	32	16	16	0	0
5	16	0	0	12	32	0	0	0	0	0	0	24


Current model


Proposed model


General	General
heterosis	recomb
1	0
1	0.25
1	0.1875
0	0
0	0

Heterosis				Recombination			
			remaining				remaining
HOXFR	нохмо	FRXMO	heterosis	HOXFR	нохмо	FRXMO	recombination
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0.25	0	0	0.75	0	0	0	0.1875
0	0	0	1	0.25	0	0	0
0	0	0	0.75	0	0	0	0

63

Further work

- Decide on criteria which qualifies a cross to enter the evaluation
- Implement a similar analysis across all evaluations
 - Milk, fertility, calving beef, health
- Report back in due course with test run results
- Work should allow a more accurate prediction of genetic merit on both purebred and crossbred animals by correcting the effects of heterosis and recombination in specific breed crosses.
- Eventual incorporation into Sire advice program

8. Farmer Management Traits (i)

- · Farmer Satisfaction.
- Farmer satisfaction scored as part of current LIFT program ~ 2,000 records.
- · Plan to include "farmers satisfaction" as an event to record on website.
- · Update at next meeting.
- New trait for Spring 2008?

69

Farmer Management Traits (ii)

- · Temperament & Milking Speed.
- · Currently evaluated as part of LIFT.
 - Sires with daughters in Ireland.
- Data now included in new Interbull "pilot" study.
- · Expect international proofs in 2008.
- Potential role of data from EDIY MR meters.
 - Research project for 2008.

11. Roll-out Plan

- Next meeting Tuesday 27th November.
 - Finalise changes for 2008.
- · Plan for official proof release;
 - Interbull evaluation December 07
 - Further domestic evaluation (all traits) –January 07
 - Official proofs ~ 25th January 2008.