

ICBF Beef & Dairy Industry Meetings.

Killeshin Hotel, Portlaoise. 7th September.

© Irish Cattle Breeding Federation Soc. Ltd 2011

1

Agenda.

Dairy breeding only (10 AM - 11 AM).

- 1. Genomics update Donagh
- 2. G€N€ IR€LAND Dairy Update Andrew
- 3. AOB

Dairy & beef breeding (11 AM - 3.30 PM).

- 1. Update on Actions
- 2. Meeting Schedule
- 3. Cost:benefit analysis Peter Amer & Andrew

Break for lunch.

Dairy & beef breeding - Continued.

- 4. Beef breeding plan ICBF team
 - a. Birth weights Andrew.
 - b. Weight recording Pat.
 - c. Data quality index Andrew.
 - d. G€N€ IR€LAND Andrew.
 - e. Tully Stephen.
 - f. Stock bull evaluation Peter.
 - g. Economic indexes & presentation of indexes Peter.
- AOB

Beef breeding only (4.00 PM - 4.30 PM).

- 1. Maternal traits (milk & fertility) Andrew.
- 2. Genomics update Donagh
- 3 AOF

© Irish Cattle Breeding Federation Soc. Ltd 2011

2

(International) developments in genomics in dairying

Donagh Berry¹, Francis Kearney² & Andrew Cromie²

¹Teagasc, Moorepark, Ireland ²Irish Cattle Breeding Federation, Ireland

donagh.berry@teagasc.ie

Overview

- 1. Update on recent research and operational system developments
- 2. Update on performance of genomic selection in Ireland
- 3. International views from INTERBULL
- 4. Research plans

ICBF Genomics database

- · Database now built by ICBF & being tested
 - ~11k genotypes (50% from IRE & 50% international)
 - Web interface -> request ->script -> extract ->ftp
- · Access control
 - Owner of genotypes defines who has access
 - By chip type * breed * country
 - For example, parentage SNP's (ALL), 50k (country 1 only), HD chips (country 1 & country 2)

The Irish Agriculture and Food Development Authority

5

Performance

- · Rapid download.
- \cdot 3K & 50K = <1 sec.
- File of genotypes 13 HD = <1 min
- · View at: Vimeo.com/28201884

The Irish Agriculture and Food Development Authority

6

Conclusions - database

System being tested internationally

Is genomic selection working?

- G€N€ IR€LAND progeny test bulls
- · 69 bulls tested over 2 years
- · Comparison
 - Parent average proof in 2005/2006
 - GS proof in 2009/2010
 - Actual progeny test proof in 2011

Mean Bias in Proofs

	Parent Ave	Genomic	Progeny
	2005/2006	2009/2010	2011
Protein kg (Gen SD = 6.20)			
Group average (kg)	11.1	10.6	8.1
Group average reliability (%)	37.1	56.8	89.8
Daughters/herds	0/0	0/0	81/54
CI Days (Gen SD = 3.61)			
Group average (days)	-2.0	-2.6	-3.2
Group average reliability (%)	15	41.4	55.6
Daughters/herds	0/0	0/0	81/54
EBI (Gen SD = €74.0)			
Group average (€/lact)	€108.5	€129.4	€116.6
Group average reliability (%)	27.2	51.9	75.8
Daughters/herds	0/0	0/0	81/54

Cromie et al., (2011) INTERBULL

C

Correlation in proofs

•					
	Parent Ave	Genomic	Progeny		
	2005/2006	2009/2010	2011		
Protein kg					
Parent Average	1.00	0.846	0.631		
Genomics		1.00	0.698		
Progeny			1.00		
CI Days					
Parent Average	1.00	0.772	0.554		
Genomics		1.00	0.651		
Progeny			1.00		
<u>EBI</u>					
Parent Average	1.00	0.372	0.186		
Genomics		1.00	0.517		
Progeny			1.00		

Cromie et al., (2011) INTERBULL

10

International experiences from INTERULL

- Ireland successfully passed INTERBULL validation test for genomic selection
- Bias (inflation) still exists in many populations and of concern

One-step genomic selection

- Currently we estimated direct genomic values and blend with parental average
 - Two-step approach
- · Possible to do in "one-step"
 - Advantages:
 - Non-genotyped relatives receive benefit
 - Reduces bias
 - Accounts for selection

Irish software developments

- · Considerable computing power required
- · Overhaul of software
 - Handle larger datasets and larger SNP chips
 - More user-friendly
 - Multi-breed (Holstein v Friesian)
- · Testing well underway

The Irish Agriculture and Food Development Authority

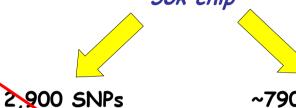
13

Prediction bias

- Tendency in Ireland and several other countries for genomic proofs to overestimate (i.e., bias) proofs
- In Ireland: underestimate high bulls and overestimate low bulls
- Several options available and under consideration

The Irish Agriculture and Food Development Authority

1.4


Conclusions - Genomics

- Genomic predictions are better than parent average
 - Still not 100% accurate of course!
- Positioning ourselves for increasing quantities of data (SNPs & animals)
- · Prioritise research on bias of proofs

Slide from July 2011 on SNPchips

Currently 54,001 SNPs
New version 54,609 SNPs
50k chip

~790,000 SNPs HD chip High Density chip

3k ck

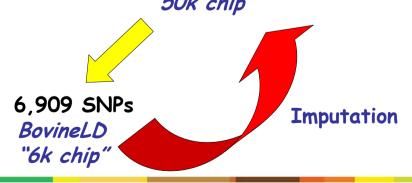
The Irish Agriculture and Food Development Authority

Slide from July 2011 on SNPchips

Currently 54,001 SNPs
New version 54,609 SNPs
50k chip

6,909 SNPs
BovineLD
"6k chip"

777,962 SNPs HD chip High Density chip



The Irish Agriculture and Food Development Authority

8

Slide from July 2011 on SNPchips

Currently 54,001 SNPs
New version 54,609 SNPs
50k chip

The Irish Agriculture and Food Development Authority

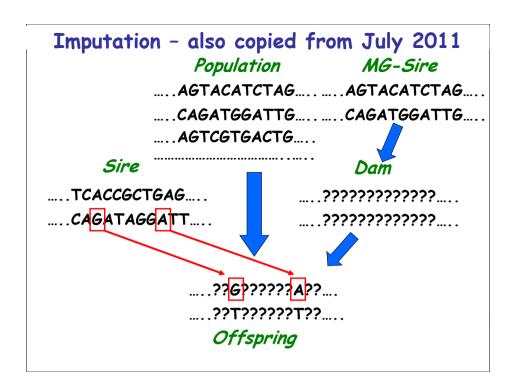
Imputation - also copied from July 2011

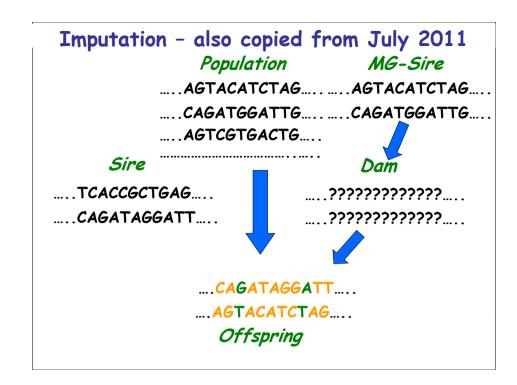
Sire
.....TCACCGCTGAG.....
.....CAGATAGGATT.....

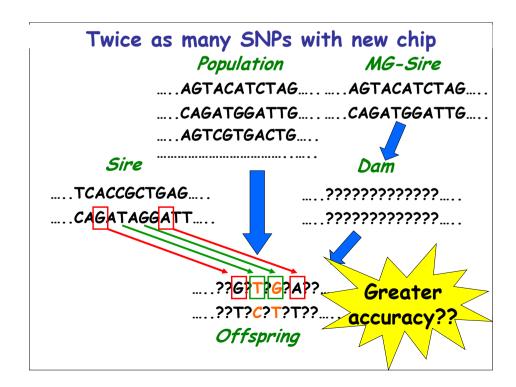
.....??<mark>G</mark>}?????<mark>A</mark>}?....??T??????T??..... *Offspring*

Sire Dam

.....TCACCGCTGAG.....AGTACATCTAG.....

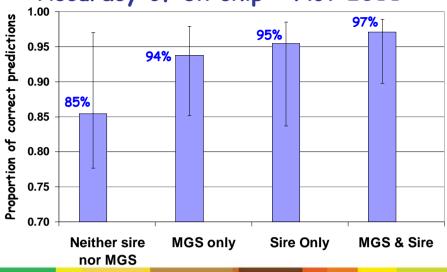

.....CAGATAGGATT.....CAGATGGATTG.....


.....CAGATAGGATT.....


.....AGTACATCTAG.....

Offspring

Imputation - also copied from July 2011



Testing - more copying from Nov 2011

- 5,496 animals with genotypes on 54,000 SNPs
- 764 animals born since 2006 assumed to be genotyped only on smaller 3,000 SNP chip 6,909
- Had their 54,000 genotypes so knew the "answer"

Accuracy of 3k chip - Nov 2011

The Irish Agriculture and Food Development Authority

29

Accuracy of 6k chip [Red bars] predictions 98% 95% 99% 0.95 94% 0.90 correct 85% 0.85 Proportion of 0.80 0.75 MGS only Sire Only MGS & Sire **Neither sire** nor MGS

The Irish Agriculture and Food Development Authority

U

Imputation experiences from INTERBULL

- Beagle (what Ireland uses) appears to be the most accurate software but takes the longest
 - Irish genotyped population size is still relatively small
 - · Computing capacity in Ireland is good
 - Can upscale to higher density chips
 - Following up on a few tips on how to run faster
- Unlike Ireland no restriction on existence of back pedigree when imputing

Imputation accuracies from INTERBULL

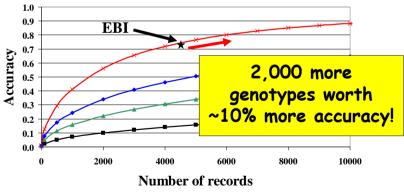
Genotyped	Ireland	Switz_BSW	Switz_MI	(Canada_BSW	Canada_HOLF	ance (dairy) Germany
Both parents				0.95 to 0.99	0.95 to 0.99		
Sire & MGS	0.97	0.94	0.93	0.93 to 0.95	0.95 to 0.96		
Sire only	0.95	0.92	0.96		0.95 to 0.96		
MGS only				0.74 to 0.92	0.87 to 0.92		`+0.01
Neither sire/MGS	0.85	0.87	0.83				
Average	0.92	0.91	0.91	0.92	0.95	0.97	0.95 to 0.98

Conclusions - imputation

- · Greater accuracy of imputation with newer chip
 - · No difference in cost
- Uses Infinium not GoldenGate technology so better call rates and easier for lab
- · Software we use is (in my opinion) the best and no immediate need to consider changing
- If animal >50% Holstein consider removing restriction on sire to be genotyped

The Irish Agriculture and Food Development Authority

33


Still need more genotypes!

The Irish Agriculture and Food Development Authority

4

Training population size

$$+ h^2 = 0.03 + h^2 = 0.15 + h^2 = 0.35 + h^2 = 0.90$$

ACUSTITURE AND FOCK DEPARTMENT ALTERNATION

International training populations

Country	Size
Ireland	4,500 (milk)
UK	11,480
Eurogenomics	14,385
North America	~10,000
New Zealand (HOL)	2290
Australia	2193

Continued international sharing

- · IGenoP now operational and being tested
- New genotypes:
 - Australia, Belgium, New Zealand....
 - Still lots of stock bulls

The Irish Agriculture and Food Development Authority

37

Concluding remarks

- Higher density chip does not add much accuracy of within breed genomics
- International genomic evaluations
 (GMACE) still have, in my opinion, issues
 that need to be resolved
- Calculation of reliability

The Irish Agriculture and Food Development Authority

8

Concluding remarks

- Need to consider moving parentage testing from micro-satellites to SNPs
- · Advantages:
 - Internationally this is where we are going so it's just a question of when do we jump
 - Avoids double cost of parentage + genomic selection
- Disadvantages:
 - Need to genotype back-pedigree for SNPs (data already available for many bulls and parentage SNPs likely to be available on many more bulls internationally)

Overall conclusions

- Genomic selection is working
- Ireland in line with international approaches and results
- · Still considerable room for improvement

G€N€ IR€LAND - Dairy.

Killeshin Hotel, Portlaoise. 7th September.

© Irish Cattle Breeding Federation Soc. Ltd 2011 41

G€N€ IR€LAND - Dairy.

- · Flite bull mothers
 - Inseminations from Spring 2011.
- Next Generation Herds
 - Update on proposition.
- · Bull breeding herds.
 - Project for Spring 2011.

Elite Bull Mothers - Recap.

- · Objective: How do we generate more high EBI "out-cross" calves for G€N€ IR€I AND breeding program?
 - Avoiding the Oman effect.
- · Project group established in Dec 09.
 - ICBF, Teagasc, bull breeders & AI companies.
 - April 2010. Suggested mating sent to 2267 high EBI & outcross bull mothers.
 - November 2010. 1253 of these cows alive, with recorded inseminations, 315 of which were to the suggested bull, 267 with last insem (21%).

Flite Bull Mothers - 2011.

42.

- · How can we improve uptake in program?
 - Earlier communication with bull breeders.
- Feb 2011. Letters sent to 3,412 cows.
- · Sept 2011. 1727 of these cows alive, with recorded inseminations, 342 of which were to the suggested bull, 285 with last insemination (17%).
 - Ahead of last year more recorded insems.
 - Big push on DIY herds in next few weeks. Expect a further 100-200 inseminations.
- · Very positive development limited cost.

Next generation herds.

- Proposition currently being developed with Teagasc.
- · Objectives of proposition.
 - Difficult to measure traits, e.g., GHG.
 - Development of EBI.
 - Ensure compatibility between "future cow" & "future production system".
 - High EBI males for G€N€ IR€LAND.
- Good progress. Objective of having first herd in place by end of year.

· Discussion underway re: additional herds.

45

Bull Breeding Herds - Project

- Objective: how can we make genotyping a routine part of rearing dairy herd replacements?
 - Valuable data for future research & training (all animals genotyped + phenotypes=more accurate predictions).
 - High EBI females for G€N€ IR€LAND.
- · Recent developments.
 - New 6k chip = higher imputation accuracy.
 - Volume discounts from Ilumina.

46

Bull Breeding Herds - Project

- · Recent developments (continued).
 - BVD scheme in 2012, based on tissue tag.
 - Lower than budgeted spend on current G€N€
 IR€LAND (incentives) = some additional capital.
- Project commencing in Autumn to target
 ~500 bull breeding herds.
 - Genotype all female calves in 2012, using new tissue tag.
 - · Genomic EBI, BVD test, parentage verification.
 - Introductory offer = €20/calf (target).
 - Test & develop internal system for anticipated increased uptake in future.

Agenda.

48

Dairy breeding only (10 AM - 11 AM).

- 1. Genomics update Donagh
- 2. G€N€ IR€LAND Dairy Update Andrew
- 3. AOI

Dairy & beef breeding (11 AM - 3.30 PM).

- 1. Update on Actions
- 2. Meeting Schedule
- 3. Cost:benefit analysis Peter Amer & Andrew

Break for lunch.

Dairy & beef breeding - Continued.

- 4. Beef breeding plan ICBF team
 - a. Birth weights Andrew
 - b. Weight recording Pat.
 - c. Data quality index Andrew.
 - d. G€N€ IR€LAND Andrew.
 - e. Tully Stepher
 - f. Stock bull evaluation Peter.
 - g. Economic indexes & presentation of indexes Peter.

5. AOE

Beef breeding only (4.00 PM - 4.30 PM).

- 1. Maternal traits (milk & fertility) Andrew.
- 2. Genomics update Donagh
- AOB

Update on Actions

Item	Description	Action
1	Maternal Weaning Wt. Evaluation	Continue testing
2	Beef Fertility	Continue testing
3	Missing factory data (raised by Laurie Harney - 18th August)	Under investigation
4		Progress report this meeting. Feedback from industry awaited.
5	Stock Bull evaluation	Progress report this meeting
6	Beef bulls for dairy cows	Report to next meeting
7		Under action joinIty ICBF, Teagasc, UCD.

© Irish Cattle Breeding Federation Soc. Ltd 2011

49

Meeting Schedule

		1
No.	Date	Meeting
2	Tuesday 1st Nov 2011	Herd Book Technical
3	Thursday 17th Nov 2011	Breeding Consultation
4	Tuesday 28th Feb 2012	Herd Book Technical
5	Wednesday 14th Mar 2012	Breeding Consultation
6	Wednesday 27th Jun 2012	Herd Book Technical
7	Wednesday 11th July 2012	Breeding Consultation
8	Wednesday 22 nd Aug 2012	Herd Book Technical
9	Wednesday 12th Sept 2012	Breeding Consultation
10	Wednesday 31st Oct 2012	Herd Book Technical
11	Wednesday 14th Nov 2012	Breeding Consultation

© Irish Cattle Breeding Federation Soc. Ltd 201

50

COST BENEFIT ANALYSIS OF NEW BEEF GENETIC IMPROVEMENT INITIATIVES

Peter Amer

Background

- □ ICBF Beef Breeding Review (June 2011)
- □ Harvest 2020 Beef Activation Group
- □ Tully
 - performance test >>> progeny test
 - meat quality and health traits
- □ Relationships with pedigree breeders
 - Linear scoring
 - Weight recording service
 - Quality control
- Capturing high merit stock bulls for genetic improvement

Where are we now?

☐ Genetic trend well below potential

Improving merit of stock bulls

	SBV increase on				
	previous birth year				
Breed	2007	2008			
AA	2.1	3.7			
СН	2.9	3.2			
HE	3.9 1.2				
LM	2.8	5.6			
SI	1.3 1.2				
Average	2.6	2.6 3.0			

Potential is 7 euro plus

E 1

53

Where are we now?

- $\hfill\Box$ Genetic trend well below potential
- □ Maternal traits are deteriorating

Fertility of suckler cows

	2006	2007	2008	2009	2010	2011
Calves per cow per						
/ear	0.82	0.86	0.81	0.81	0.80	0.79
Calving Interval days	399	399	398	399	406	407
Age at first calving	30.5	31.2	31.0	31.4	32.0	32.5
% heifers calved at 22-						
26 mths						12%

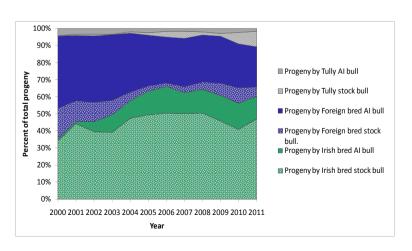
Where are we now?

- ☐ Genetic trend well below (20%) potential
- □ Maternal traits are deteriorating
- □ Ineffective use of Tully

Origin of pedigree herd sires

100%
90%
80%
70%
60%
90%
40%
30%
20%
10%
20%
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

57


Where are we now?

- ☐ Genetic trend well below (20%) potential
- □ Maternal traits are deteriorating
- □ Ineffective use of Tully
- Major influence of French bulls as sires of stock bulls

Origin of pedigree herd sires

59

58

Origin of ped herd sires

	Country of origin of stock bull's sire						
		(% of all sire origins)					
Breed	Ireland	reland France Great Other					
			Britain				
AA	61	0	5	29			
СН	34	46	0	20			
HE	78	0	2	16			
LM	34	45	1	21			
SI	76	76 0 3 21					

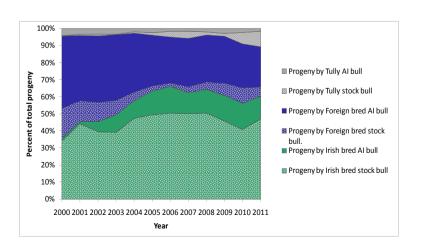
Where are we now?

□ Genetic trend well below (20%) potential

□ Maternal traits are deteriorating

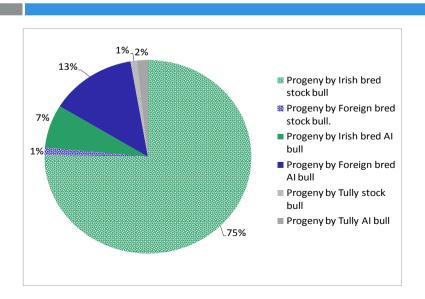
□ Ineffective use of Tully

 Major influence of French bulls as sires of stock bulls

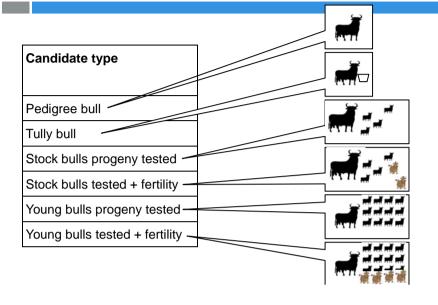

□ Limited use of AI

62

Origin of pedigree herd sires



61


Commercial herd sires

Gene Ireland progeny testing

Gene Ireland progeny testing

Candidate type	Annual	Need short generation interval
	progress	(4yo sires versus 8yo now)
Pedigree bull	4.67	
Tully bull	4.68	Need lots of bulls tested (20:1)
Stock bulls progeny tested	5.62	103104 (2011)
Stock bulls tested + fertility	5.17	
Young bulls progeny tested	7.62	
Young bulls tested + fertility	7.06	

66

Tully

- □ John Crowley PhD new data
- □ Current performance test approach is very expensive with limited impact

Candidate type	Annual progress	Double wt on feed
		intake
Pedigree bull	4.67	+0.15
Tully bull	4.68	+0.16

Tully

- Current performance test approach is very expensive with limited impact
- □ Progeny testing
 - **■** Easier fit with Gene Ireland strategy
 - Modest value from feed recording
 - Add on Meat Quality
 - Add on Health trait testing
 - **■** Better phenotypes for genomic selection

Tully

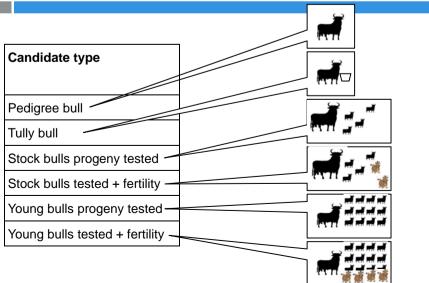
- Current performance test approach is very expensive with limited impact
- □ Progeny testing
 - Easier fit with Gene Ireland strategy
 - Modest value from feed recording
 - Add on Meat Quality
 - Add on Health trait testing
 - Better phenotypes for genomic selection
- □ Key to industry confidence in beef breeding

On farm recording

- On farm recording most critical for stock bull selection
 - □ 50% of pedigree
 - □ 75% of commercial
- More weight recording is needed on pedigree farms
- Live weight recording >>>growth rate, maternal milk
- □ Linear scores>>>conformation....functionality?

69

70


Value of farm recording

	Annual SBV response €	Results as absolute deviation from base scenario		
Candidate type	Base scenario	Drop linear scores and scoring weights		
Pedigree bull	4.67	-2.22	-0.25	
Tully bull	4.68	-2.22 -0.24		
Stock bulls progeny tested	5.62	-1.11 -0.16		
Stock bulls tested + fertility	5.17	-0.57 -0.03		
Young bulls progeny tested	7.62	-1.01 -0.12		
Young bulls tested + fertility	7.06	-0.38 0.01		

Gene Ireland progeny testing

Future proofing

What if feed intake becomes more important?

		Results as absolute deviation from base scenario
Candidate type	Base scenario	Weighting on RFI +50%
Pedigree bull	4.67	0.15
Tully bull	4.68	0.16
Stock bulls progeny tested	5.62	0.15
Stock bulls tested + fertility	5.17	0.17
Young bulls progeny tested	7.62	0.38
Young bulls tested + fertility	7.06	0.33

Future proofing

What if meat quality becomes an economically more important trait?

		Results as absolute deviation				
		from base scenario				
Candidate type	Base	MQ at 10%	MQ at 33%			
	scenario	importance	importance			
Pedigree bull	4.67	0.03	0.43			
Tully bull	4.68	0.03	0.43			
Stock bulls progeny tested	5.62	0.02	0.33			
Stock bulls tested + fertility	5.17	0.02	0.30			
Young bulls progeny tested	7.62	0.17	2.79			
Young bulls tested + fertility	7.06	0.16	2.50			

Future proofing

73

What if maternal trait priorities change?

	Economic response due to maternal traits							
Candidate type	Base	Mat trait EW	Mat trait EW	Terminal trait				
		doubled	tripled	focus				
Pedigree bull	0.12	0.64	1.49	-0.09				
Tully bull	0.12	0.66	1.52	-0.10				
Stock bulls progeny tested	-0.02	0.61	1.80	-0.63				
Stock bulls tested + fertility	0.01	0.73	2.00	-0.64				
Young bulls progeny tested	-0.26	0.66	2.53	-1.58				
Young bulls tested + fertility	0.10	1.54	3.82	-1.10				

Costs versus benefits

74

Rate of genetic progress in SBV increases from ${\in}\,3.00$ to ${\in}\,3.50$

€200k ongoing annual investment to achieve this

	Millions of Euros (cumulative)					
	PV Benefits	PV Costs	NPV			
10 year horizon	€16.89	€2.71	€14.18			
20 year horizon	€53.80	€3.89	€49.91			
30 year horizon	€96.53	€4.54	€91.99			

Bad data.....

- □ International issue!
- □ Reduces **confidence**
- □ Lost opportunity for selection in those herds
- □ Distortion of data in connected herds
- Data quality auditing
 - Database driven
 - □ Communication driver supported improvement
 - Data filtering for genetic evaluations?
 - □ Identify partner herds Gene Ireland initiatives?

Summary

78

- Long run industry benefits justify
 - Revamped Gene Ireland
 - Tully progeny testing for feed intake plus future proof information and options (meat qual/health/genomics)
 - Partnerships (herd books and best practice breeders)
 - More weight recording
 - Maintain linear scoring and build in functionality traits
 - Young bulls and stock bulls to progeny test
 - Stock bulls available for pedigree AI
- Depend on
 - Cost effective design
 - Good data quality
 - Positive relationships
 - Confidence!

Agenda.

Dairy breeding only (10 AM - 11 AM).

- 1. Genomics update Donagh
- 2. G€N€ IR€LAND Dairy Update Andrew
- AOE

Dairy & beef breeding (11 AM - 3.30 PM).

- 1. Update on Actions
- 2. Meeting Schedule
- 3. Cost:benefit analysis Peter Amer & Andrew

Break for lunch.

Dairy & beef breeding - Continued.

- 4. Beef breeding plan ICBF team
 - a. Birth weights Andrew.
 - b. Weight recording Pat.
 - c. Data quality index Andrew.
 - d. G€N€ IR€LAND Andrew.
 - e. Tully Stephen. f. Stock bull evaluation - Peter.
 - g. Economic indexes & presentation of indexes Peter.
- 5. AOB

Beef breeding only (4.00 PM - 4.30 PM).

- 1. Maternal traits (milk & fertility) Andrew.
- 2. Genomics update Donagh
- 3. AOB

77

IRISH CATTLE BREEDING FEDERATION

Birth Weights.

Killeshin Hotel, Portlaoise. 7th September.

Project - Birth weights (i).

- · Objective: To develop a system for routine recording of birth weights.
 - Birth weights are valuable for; (i) growth rate, (ii) mature weight, and (iii) calving traits (difficulty, gestation length & mortality).
- Plans to initiate a project this Autumn.
- 20 herds * 1000 calves. 10 G€N€
 IR€LAND and 10 pedigree herds.

81

Project - Birth weights (ii).

- Collect "actual" birth weights and 3-4 phenotypic measures (e.g., girth, height, length back, canon bone).
- Identify "best" predictors of birth weight.
 Develop prediction equations.
- · Launch service Jan 2011.
 - Actual birth weight or "birth measurement" (database will then derive birth weight based on sex, breed, dam parity....)
 - Developing recording systems in-line with this.
- Goal: birth weights become a part of routine data recording - same as SCWS.

82.

IRISH CATTLE BREEDING FEDERATION

New Weight Recording Project

Pat Donnellan ICBF.

Wednesday 7th September 2011

Content

- Project Objective
- Weighing Service Overview
- Equipment
- New Weighing Report
- Proposal

Project Objective

To develop a sustainable national Weight Recording Service

Why?

- Currently no National System in place for collecting large numbers of on-farm weights
- _
- On-Farm Weight Data has many different and important uses:

© Irish Cattle Breeding Federation Soc. Ltd 2011

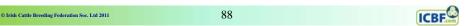
85

Why Weight Record?

- · Maternal Estimate milkability of Suckler Cows
- · Growth Monitor Growth rates/Animal Performance
- · Management Batch cattle based on predicted weights.
- · Dairy Hit Target weights for mating.
- · Factories Forward planning & animsl procurement.
- · Research Various Research trials require weight data.
- · Data Quality Dates of Birth & Growth Rates etc.
- · Exported Weanlings No longer 'lost' from the database.
- · Genomics Important Phenotypic data for analysis.

© Irish Cattle Breeding Federation Soc. Ltd 2011

86



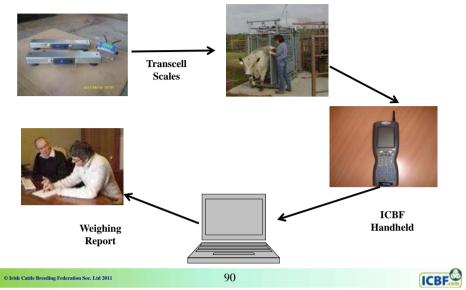
Weighing Service

- · Proposed Operational Plan:
- 1. Farmer weighs 3 times (Turn-Out, Summer & Housing)
 - Own Scales
 - Discussion Group Scales
 - Contractor Scales
- 2. Weights sent electronically to ICBF
- 3. Receives Herdplus Weighing Report

Weighing Service

- 4. Report shows:
 - Weights & Daily Gains
 - Predicted Weights also shown*
- *New 'Weight Predictor' software has been developed in house. (J Crowley ICBF).
- Weight Predictor will allow Farmers to better manage animals (target weights & dates).

Weighing Service


- 1. Weigh Cells and platform are put into crush.
- 2. Animal gets onto scales.
- 3. Once steady weight is detected it is shown on indicator & sent to handheld.
- 4. At end of session, data is sent to ICBF database, analysed, put into a report and put up online.
- 5. Report can then be accessed by Herdowner showing weights, daily gains and 'Weight Predictions'.
- 6. Ideally Contractor/Advisor etc would also go through report with Herdowner.

© Irish Cattle Breeding Federation Soc. Ltd 2011

89

Weighing Service

Weighing Service

- 2 Elements of the Project being currently progressed:
- Equipment
- · Reports

Equipment

- · Aim is to identify weighing equipment that will:
- · Electronically capture weights on-farm.
 - i.e. Weight automatically sent from scales to Handheld (Bluetooth)
- Be Longlasting & allow for easy setup & transport between farms.

92

· Be EID compatible.

Equipment

- · Suitable Weighing Provider located (Transcell USA)
- January 2011 Liaising with Transcell began to design Weigh Cells for Irish Spec.
- · 4 Weighing Units delivered to ICBF (Aug 2011).
- · Bluetooth Functionality.
- · Communicates directly with Handheld.
- · EID Compatible.
- · Platform currently being designed.

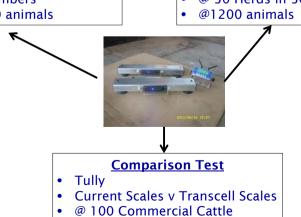
© Irish Cattle Breeding Federation Soc. Ltd 2011

93

Transcell Weighing Cells

© Irish Cattle Breeding Federation Soc. Ltd 2011

94


Equipment Testing Plan

Discussion Group Test

- Discussion Group located
- 12 members
- @2000 animals

Contractor Test

- Kerry FRS
- @ 30 Herds in 30km radius

Equipment Testing Plan

New Weight Report

- · New Report needs to be simple & easy to follow.
- · New Report should include:
 - Summary Front Page
 - Simple Animal Listing including 'Weight Predictor'

© Irish Cattle Breeding Federation Soc. Ltd 2011

97

Proposal

- Equipment
- · Test out new platform & weigh cells (Sep/Oct).
- Report
- · Finalise design for report (Sep/Oct)
- · Release
- · 'Go Live' with new system January 2011

© Irish Cattle Breeding Federation Soc. Ltd 2011

© Irish Cattle Breeding Federation Soc. Ltd 20:

98

Herd Data Quality Index.

- · Objective: Tool to help breeders improve quality of data for beef breeding.
 - Timeliness.
 - Accuracy
 - Completeness.
 - Normality of distribution.
- · "Voluntary" program.
- · Encourage buyers to purchase bulls from herds with high data quality.
- · Exclude herds with poor data quality from genetic evaluations - herds that add bias.

- Pedigree beef cows (on farm on 1st July 2011)	16	
- Pedigree beef reistrations (from 1st July 2010 to 30th June 2011)	14	
- Pedigree beef registration - Al bred calves (from 1st July 2010 to 30th June 2011)	13	
- ET registrations (from 1st July 2010 to 30th June 2011)	1	
 Pedigree youngstock (300-720 days and on-farm on 1st July 2011) 	14	
 Number of suckier beef calvings (from 1st July 2010 to 30th June 2011). 	23	
- Number of dairy calvings (from 1st July 2010 to 30th June 2011)	1	

Table 2: Your Herd Data Quality Performance Score Card. Breed average figures based on herds with

	Your Herd	Breed Average	Breed Top 10%	Your Rank out of 100	Your Star Rating
1. Timeliness of data .	S (5)		1 8		1-7
Days to first birth registration Number of stays between date of birth and date of first receiptation through Ammal Events	15.7	14.7	6.3	44%	***
Insernination and birth events The % of Al births (14), with a prior insermination record recorded minimum 6 months prior to birth record (12)	92%	39%	100%	76%	****

2. Accuracy of data					
Birth registration errors (Animal Events) % of birth repolations (14), with an initial registration error (1)	7%	11%	0%	71%	****
% queries on birth dates. The number of Al births with a prior inserenation record (13), and where there is a subsequent query on DOB (5).	0%	17%	0%	100%	****

% calves with complete data.					
Number of youngstock (14), with calving survey, docility & call quality data from SCWS (14)	100%	76%	100%	100%	*****
% performance recording.	- masey	Toward.	410000	cons	200,000,000
Number of youngstock (14), with an on-farm swight record (14).	100%	55%	100%	100%	*****

Number of youngstock (14), with an on-farm swight record (14)	100%	55%	100%	100%	*****
4. Quality of data for genetic evaluations (based	on wearing we	ght).			
Genetic connectedness Level of penetic connectedness of hard to National evaluations					
Contemporary groups					
Number of defined contemporary groups within given herd year.	5				
Variance of proofs Ratio of herd Standard deviation for West (6.87) to average all herds (6.05)	1.36	1.00	N/A	41%	***
*=0-20% **=21-40% ***=4	41 - 60% *	* * * = 61 -	80% **	***=81+	100%
Table of Terms					
Breed Average The average per	formance of all h	ends for releva	ent Key Perform	nance Indicato	r (KPI)
Breed Top 10% The top 10% cut	off point of all he	rds for the rei	levant Key Perf	ormance Indic	ator (KPI)

Table 1. Herd Summary.

Herd Data Quality Report Breed A

Herd Owner: Herd Designator: Print Date:

Table 1. Herd Summary Data

- Pedigree beef cows (on farm on 1st July 2011)	16	
- Pedigree beef reistrations (from 1st July 2010 to 30th June 2011)	14	
- Pedigree beef registration - Al bred calves (from 1st July 2010 to 30th June 2011)	13	
- ET registrations (from 1st July 2010 to 30th June 2011)	1	
- Pedigree youngstock (300-720 days and on-farm on 1st July 2011)	14	
- Number of suckler beef calvings (from 1st July 2010 to 30th June 2011).	23	
- Number of dairy calvings (from 1st July 2010 to 30th June 2011)	1	

© Irish Cattle Breeding Federation Soc. Ltd 2011

101

Table 2. KPI's (ii)

Table 2: Your Herd Data Quality Performance Score Card. Breed average figures based on herds with minimum 5 Al bred registrations in 2010/2011 and 5 youngstock on farm on 1st July 2011.

	Your Herd	Breed Average	Breed Top 10%	Your Rank out of 100	Your Star Rating
3. Completeness of data					
% calves with complete data.					
Number of youngstock (14), with calving survey, docility & calf quality data from SCWS (14)	100%	76%	100%	100%	****
% performance recording.					
Number of youngstock (14), with an on-farm weight record (14)	100%	55%	100%	100%	****
4. Quality of data for genetic evaluations (based on t	weaning wei	ght).			
Genetic connectedness Level of genetic connectedness of herd to National evaluations					
Contemporary groups					
Number of defined contemporary groups within given herd- year.					
Variance of proofs Ratio of herd Standard deviation for Wwt (6.87) to average of all herds (5.05)	1.36	1.00	N/A	41%	***
¹ ★ = 0 - 20%	60% ★:	* * * = 61 -	80% ★★	*** = 81 - 1	100%
	10				

Table 2. KPI's (i)

Table 2: Your Herd Data Quality Performance Score Card. Breed average figures based on herds with m F All head registrations in 2010/2011 and F voungetest on form on 1st lub 2011

	Your Herd	Breed Average	Breed Top 10%	Your Rank out of 100	Your Star Rating
1. Timeliness of data .					
Days to first birth registration Number of days between date of birth and date of first registration through Animal Events	15.7	14.7	6.3	44%	***
Insemination and birth events The % of AI births (12), with a prior insemination record recorded minimum 6 months prior to birth record (13)	92%	39%	100%	76%	***

2. Accuracy of data							
Birth registration errors (Animal Events) % of birth registrations (14), with an initial registration error (1)	7%	11%	0%	71%	***		
% queries on birth dates. The number of AI births with a prior insemination record (13), and where there is a subsequent query on DOB (0)	0%	17%	0%	100%	****		

© Irish Cattle Breeding Federation Soc. Ltd 2011

102

What next?

- · Continue development work.
 - Finalise list of most appropriate indicators - feedback appreciated.
 - · Ongoing process, e.g., birth weights.
 - List of animals that make up KPI's to support follow-up with breeders?
 - · How do I improve the quality of my data?
 - How to handle multiple breeds & commercials?
- · Finalise design, start development work. Available January 2011.

G€N€ IR€LAND - Beef

Killeshin Hotel, Portlaoise. 7th September.

© Irish Cattle Breeding Federation Soc. Ltd 2009 105

Review of program.

- Amer report has identified the benefits of a well structured progeny test program.
 - Target of 100 bulls tested per annum.
 - Currently testing 10-15.
 - Potential genetic gain = €15/year (€100m to beef industry).
 - Opportunity to focus on maternal traits.
- · Other benefits of progeny testing.
 - Improvement in maternal traits.
 - Data for genomics research.
 - Opportunity to become an "exporter" rather than an importer of genetics – genomics and international beef evaluations.
- · What are the blockages and how do we overcome?
 - Herds, bulls, structures......

106

(i) G€N€ IR€LAND - Herds

					2011
	2007	2008	2009	2010	Todate
Herds involved in					
the program	146	468	726	491	254
Straws dispatched	2,920	7,956	12,342	8,860	4,297
Straws/herd	20	17	17	18	17
Bull equivalents					
tested	4.2	11.4	18	12.6	6

- · Peaked in 2009 incentive + bulls.
- · ~500 herds in 2011.

- · Yes, 927 herds across 5 years of program.
- · Based on 2010/2011 calving data.
 - 37,886 beef cows.
 - 33,164 births.
 - 17,665 AI bred
 - 6,363 maternal replacements.
- Capacity to test 50 bulls/year in these herds alone.
 - Assuming 100 females per bull. Drop to 50 daughters = 100 bulls.

Do we have the bulls?

 Yes. For example, Limousin breed = 15.9k stock bulls currently on farm

	Potential G€N€				
			IR€LAND 5 Stars		
	All B	Bulls	SBV & 3 s	tars M&F	
	Number	SBV	Number	SBV	
Young bulls (0-					
12 mths)	3469	€76.6	623	€102	
Older bulls (>= 5					
daughters)	645	€57	57	€109	

 Opportunity to focus on these 2 groups of bulls - increased genetic gain

109

What is the process?

- · Simplified approach.
 - Past = Young bulls -> Tully -> AI station.
 - Future = Bulls (young & old) -> Al station.
- Identify elite animals for breeding program.
 - ICBF working closely with bull breeders, breed society & partner AI companies.
 - Lists of young bulls, old bulls & females.
 - Target herds & animals.
 - Select animals for program.

What is the process?

- · Collect semen.
 - Contracted AI centres
 - Semen for progeny test, bull owner & breeding program (sires of sons).
 - Ownership & royalty arrangements.
- Distribute semen to G€N€ IR€LAND progeny test.
 - Collect data, generate indexes and identify exceptional bulls for breeding sires of sons.

Partnership approach.

- · G€N€ IR€LAND launched in 2007.
- · Systems and structures are in place.
- · Herds & bulls are available.
- Need all partners to be involved to realise €100 m potential gain.
 - ICBF, breeders, herdbooks, Al companies.....

What next?

- Establish if there is industry support for proposition.
 - Benefits; gain, maternal, genomics....world leaders.
- Develop funding plan to support the program.
 - Short-term = to kick-start.
 - Long-term = to ensure a sustainable model.

ICBF.com

113

IRISH CATTLE BREEDING FEDERATION

Update on the future role of Tully

Stephen Conroy, ICBF 7th September 2011

Background

- · Beef breeding review underway
- · Tully
 - Cost/benefit analysis of beef genetic improvements options for Tully
- · Review outcome:
 - Commercial animals most viable option going forward

Objectives

Transfer of Tully from bull performance testing centre to testing commercial progeny

Selection Process

- · Capacity for 250 animal per intake at present
- · Initial selection: (database)
 - Progeny from G€N€ IR€LAND bulls
 - Based on age (gender)
 - Bulls (n = 100)
 - Sire & MGS recorded
- · Further selection: (on-farm)
 - Based on weight & health
- · Additional selection criteria:
 - 10-15 progeny per sire
 - Higher numbers for recording female fertility traits
 - Adequate semen availability

117

Progeny available

	Finished				
Name of Bull	G.I	Progeny born Nov/Dec 2010	M Progeny born Nov/Dec 2010	F Progeny born Nov/Dec 2010	Breed
	program	•			
Rawburn Lord Rocket	Feb-10	53	28	25	AA
Courtwood Aidan	Dec-09	13	8	5	BA
Sauveur de Monin Chapelle	Jan-10	39	20	19	BB
Evergreen Chestnut	Feb-10	51	29	22	ВВ
Cottstown Brendan	Nov-09	56	24	32	СН
Celtic Vichy	Feb-10	13	8	5	СН
Chouchou	Feb-10	58	27	31	LM
Milbrook Dartangan	Jan-10	64	32	32	LM
Kyle Chap	Jan-10	31	15	16	PT
Ballymackeogh Hugh	Mar-11	31	16	15	SA
Creaga Dice	Jul-10	28	14	14	SH
Raceview Van Halen	Nov-09	46	22	24	SI
Hillcrest Sylvester	May-10	13	5	8	SI
Total		496	248	248	

Purchasing of animals

- · Purchasing Information:
 - Displayed on the ICBF website
 - Based on market value for 5 star progeny
 - Updated every week
 - Minimum of 3 animals per farm
 - Work with group of 25-35 herds initially
 - Subject to parentage testing for sire

Selection Process

- · Suggested dates:
 - 10th Oct: Contact farmers with eligible animals
 - 18th October: Start on-farm purchasing/inspections
 - 15th November: Start adaptation period at Tully
 - 1st December: Start performance test
 - 28th February 2011: Finish performance test

Management

- · Health:
 - IBR, BVD, RSV, PI3, Pasteurella, Blackleg & other clostridia diseases
 - Export T.B test on-farm
- · Diet:
 - Standard commercial diet to include roughage

Future Work

- · Develop standard commercial diet
- · Health traits
 - Immune responses, lameness
- Meat quality traits (colour, pH, tenderness, taste)
 - Further investigation & collaboration
- · Feeding systems
 - Evaluating these at present

122

STOCK BULL PERFORMANCE

Peter Amer

Background

- □ ICBF database is a potentially rich source of information about stock bulls...
- e.g. Are some AI bulls consistently leaving stock bulls with short working lives?
- □ Is the overall situation deteriorating?
- □ Are stock bulls strong for some traits tending to have shorter or longer functional lives?

Investigating....

- Herd movements, pedigree file, breed information, breeding values
 - □ Herd type (dairy, pedigree, suckler)
 - Other bulls used at the same time (connectedness)
 - Exclude AI bulls
- □ Functional life traits
 - Number of progeny
 - Length of time from first to last progeny birth
 - Censoring (young bulls still out working look like they have short functional life)

125

127

126

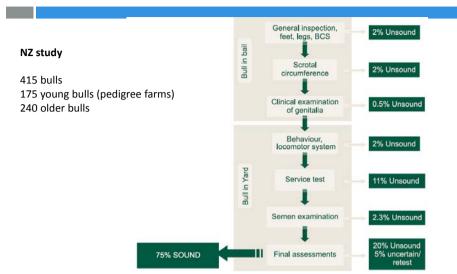
128

Scoring systems

□ Examples	Children	6	No.
= Examples	String	Count	Value
	1S/1D/1E	5770	1
1=progeny in calendar year	11S/11D	2149	2
0= no progeny in calendar year	10S	1497	1
	10	919	1
D=Dead	111S	809	3
E=Exported	11	529	2
S=Slaughtered	110	448	2
3-3laughtereu	110S	415	2
	100	314	1
	1110	264	3
	100S	232	1
	1100	170	2
	111	125	3
	1110S	110	3

Scoring systems

- ☐ Service length A
 - Number of days from conception of first progeny born until last recorded movement
- □ Service length B
 - Number of consecutive years in which a bull has progeny


Options

- Check for heritability
- □ Check for correlations with linear scores, breeding values and indexes
- □ Diagnostics to check trends over time
- □ Report to breeders on stock bull performance?
- □ Functionality scores

Functionality example

130

BEEF INDEX ISSUES AND OPTIONS

Peter Amer

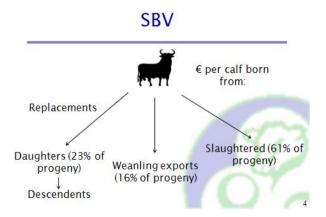
Background

- □ Beef indexes developed some time ago
- □ Many modifications
- Intentions
 - Help pedigree breeders and farmers make better selection decisions
 - Simplify complexity
 - Facilitate tactical selection (horses for courses)
- □ Issues
 - Sub indexes work differently to dairy and beef
 - New cut data?
 - Amount of emphasis on maternal traits?

Many purposes

- □ To produce a calf for export
- □ Easy calving bull for heifers or dairy herd
- All round bull to produce good calves and replacements
- □ Stock bull to breed replacement heifers
- □ Others.....?

Strategically


- □ Small population
- □ Seeking to make long term improvements
- □ Advantage of one index for all purposes
- □ Strategic objective
 - Best long term industry outcome
 - Genetic exporters rather than importers
- □ But conflict with specific "purposes" of bull and semen buyers?

133

134

SBV and sub indexes

Currently.....

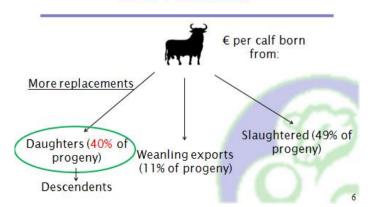
- Unfavourable trend in maternal and calving traits.....
- May get worse with current index weights (all round bull focus)

Industry trend

Fertility of suckler cows

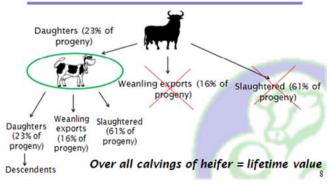
	2006	2007	2008	2009	2010	2011
Calves per cow per year	0.82	0.86	0.81	0.81	0.80	0.79
Calving Interval days	399	399	398	399	406	407
Age at first calving	30.5	31.2	31.0	31.4	32.0	32.5
% heifers calved at 22- 26 mths						12%

Projected.....


Annual	Ped bull	Tully bull	Stock	Stock bull PT	Young	Young bull PT
responses €			Bull PT	+ daughters	bull PT	+ daughters
Calving ¹	-0.89	-0.88	-0.64	-0.58	-0.42	-0.37
Maternal ¹	0.12	0.12	-0.02	0.01	-0.26	0.10
Growth ²	4.03	4.02	4.51	4.12	5.68	5.08
RFI	0.23	0.25	0.20	0.20	0.64	0.49
Carcase yield ³	1.18	1.18	1.57	1.43	1.99	1.76
Meat Quality	0.00	0.00	0.00	0.00	0.00	0.00
Total €yr	4.67	4.68	5.62	5.17	7.62	7.06

Increase maternal wt

137


SBV Maternal

ABACUSBIO LIMITED

138

SCBV - heifer selection

139

Breed ranking by index

11	SBV	SBVMat	SCBV	SCBVMat
AA	12	11	5	4
AU	5	5	4	5
BA	9	12	12	12
BB	2	2	10	10
CH	3	3	11	11
HE	11	10	3	3
LM	4	4	9	9
PI	8	9	8	8
PT	6	6	6	6
SA	7	7	7	7
SH	10	8	2	1
SI	1	1	1	2

141

143

Adding up

- □ Not all sub indexes presented
- ☐ Sub indexes don't add up to SBV
- □ Would a reformulation such that sub indexes add up to the SBV help understanding?
- □ i.e.
 - SBV=WCSI+BPSI+MSI+CSI
- □ Currently...
 - □ SBV = .16 x WCSI + .61 x BPSI + .23 MSI + other stuff

Issues

- □ Cut weights Thierry Pabiou
- □ More weighting on maternal traits
- □ What should be presented (Indexes, Sub Indexes, BVs)
- □ New Teagasc models
- □ Process needed
 - User survey
 - Test new economic values
 - **.....**?

Agenda.

Dairy breeding only (10 AM - 11 AM).

- 1. Genomics update Donagh
- 2. G€N€ IR€LAND Dairy Update Andrew
- 3. AOI

Dairy & beef breeding (11 AM - 3.30 PM).

- 1. Update on Actions
- 2. Meeting Schedule
- 3. Cost:benefit analysis Peter Amer & Andrew

Break for lunch.

Dairy & beef breeding - Continued.

- 4. Beef breeding plan ICBF team
 - a. Birth weights Andrew.
 - b. Weight recording Pat.
 - c. Data quality index Andrew.
 - d. G€N€ IR€LAND Andrew.
 - e. Tully Stephen.
 - f. Stock bull evaluation Peter.
 - g. Economic indexes & presentation of indexes Peter.
- 5. AOE

Beef breeding only (4.00 PM - 4.30 PM).

- 1. Maternal traits (milk & fertility) Andrew.
- 2. Genomics update Donagh
- 3. AOB

Maternal weaning weight evaluation

© Irish Cattle Breeding Federation Soc. Ltd 2009 145

Proposal

- · Increase reliability and relevance of trait
 - Re-definition of the pertinent trait
 - Including predictor traits
 - · Other weight data available
 - · cow milkability score
 - · Other traits?
 - Exploiting information on the link between genetics for growth (direct effect) and genes for milk (maternal effect)
 - Break up contemporary groups post 250 days into male and female to reflect on farm management practises

Current evaluations

- · Goal trait:
 - 150 to 300 day weaning weight
- Predictor traits
 - 300 to 600 day live-weight
 - Dairy herd milk yield
 - Foreign ebvs (France and UK)
- →Existing evaluation has weaknesses
- Unable to correctly pull out breed effects: UK estimates used from paper of Roughsedge (2001)
- Bulls not lining up with expectation or compared to foreign data

1/16

When is maternal weight maternal weight?

• Estimate contribution of direct (i.e., growth) and maternal (i.e., milk) to differences in animals across different ages

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Heritability			
ct Materno	al l		
6 0.24			
9 0.08			
8 0.23			
6 0.25			
9 0.24	Chanta		
4 0.18	Starts to		
1 0.12	decline		
3 0.12			
	.ct Materno .6 0.24 .9 0.08 .8 0.23 .6 0.25 .9 0.24 .4 0.18 .1 0.12		

When is maternal weight maternal weight?

 Estimate contribution of direct (i.e., growth) and maternal (i.e., milk) to differences in animals across different ages

	Herit	ability	Correlation
	Direct	Maternal	with milkability
A 0-10	0.46	0.24	0.16
B 10-50	0.49	0.08	$h^2 = 0.40$ 0.00
C 50-150	0.28	0.23	0.24
D 150-250	0.36	0.25	0.71
E 250-350	0.39	0.24	0.35
F 350-450	0.44	0.18	0.29
<i>G</i> 450-550	0.41	0.12	0.56
H 550-700	0.33	0.12	0.32

149

Exploiting growth v milk correlation

- Irish data indicating that across breed "growth trait" and "milkiness" are generally antagonistic
- Currently no assumed genetic correlation between direct (i.e., Growth) and maternal (i.e., milk) weaning weight
- Benefit would be an increased reliability for milk in daughters based on a sires direct weaning records
 - France use -0.30; UK use -0.43
- Average of -0.51 estimated from irish data across the age groups investigated;

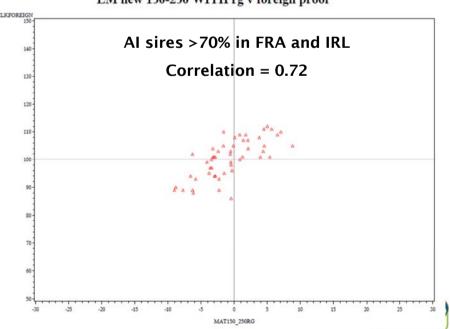
150

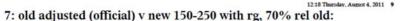
Test proofs

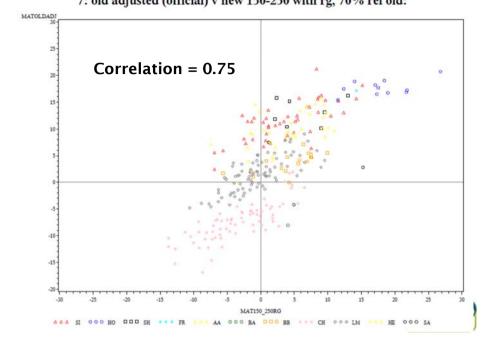
- Version 1 sent out Thursday 28th
 July
- · Version 2 sent out 15th August
 - Addition of older weight records, CMMS file in v1 only had IE tag numbers
 - Addition of more recent weight data
 - Correction for parity of dam
 - Base corrected

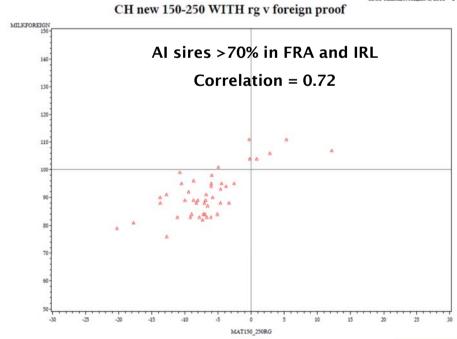
Num of records in new evaluation

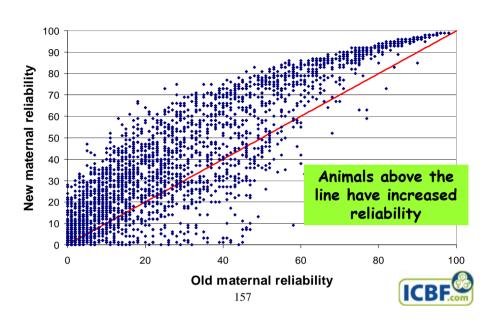
trait	animal records	num records pedigree	num records maternal grandsire	num records mgs & ped
age 0-10	94,126	88,197	88,416	85,622
age 10- 50	1,559	923	1,179	898
age 50-150	41,680	25,353	27,514	23,813
age 150-250	327,204	61,715	104,344	49,305
age 250-350	324,229	71,812	114,323	59,326
age 350-450	216,863	49,194	73,539	40,152
age 450-550	73,346	14,064	22,551	10,901
age 550-700	142,205	17,317	34,230	10,602
cow milk score	120,374	13,416		
Total	1,341,586	341,991	466,096	280,619


Weights with a MGS by birth year


	Number of weight records									
	0_10	10_50	50_150	150_250	250_350	350_450	450_550	550_700		
byr	days	days	days	days	days	days	days	days		
2001	11,452	95	1,814	3,773	3,360	3,150	905	576		
2002	12,152	138	2,684	3,635	4,322	3,312	636	734		
2003	7,251	123	1,685	2,701	2,679	2,728	711	1,113		
2004	518	4	214	2,188	3,953	3,037	1,027	1,871		
2005	583	27	348	3,374	4,412	4,004	1,388	2,230		
2006	805	15	297	4,438	5,725	4,158	1,527	3,172		
2007	815	10	395	5,896	8,476	5,861	2,288	4,242		
2008	1,225	56	952	16,748	20,531	11,352	4,785	10,185		
2009	1,031	79	1,273	17,210	19,993	12,487	5,069	9,324		
2010	1,037	96	1,451	23,115	21,049	9,667	942	21		
2011	745	211	360	373						


153


LM new 150-250 WITH rg v foreign proof



12:18 Thursday, August 4, 2011 4

Old versus new maternal reliability

Feedback

- Feedback from Limousine, Simmental and Charolais societies and NCBC
- · Some bulls more IN line now
- · More bulls more OUT of line now
- Extreme movers:
- Bulls at extreme for direct weaning weight and with no daughters yet
 - Hit hard by genetic correlation of -0.51

158

Next steps

- Testing level of negative correlation between direct and maternal weaning weight
- · Other predictor traits?
- · Specific heterosis effects
 - CH x SI: 5% heterosis for milk
 - LM x HO: 8% heterosis for milk etc.
- Look at AI sires with 70% reliability across a range of traits

Correlations with other traits

Possible predictor Trait	Current Milk pd	NEW Test Milk pd
Weaning weight	-0.10	-0.15
Carcass weight	-0.57	-0.43
Carcass conformation	-0.49	-0.33
Carcass fat	0.51	0.35
Skeletal Composite	0.03	-0.06
Muscle Composite	-0.03	-0.22
Development of hind Quarter	-0.32	-0.24
Loin Development	-0.37	-0.36
Current Milk index		0.71

Time table

- More testing in coming weeks
- Test proofs made available at end of each iteration of testing
- Hopefully implementation in December full evaluation update
- · More weight records available
- New drive to get cow milkability scores?

161

Beef Fertility evaluations

Ross Evans & Donagh Berry

© Irish Cattle Breeding Federation Soc. Ltd 2009 162

Current beef evaluations

- Parity 1 only
- Contemporary group defined within parity 1 animals (loss of data)
- Calving interval and survival in multitrait evaluation

→Low reliability!!

- More data (i.e., more lactations and more recordings
 suckler welfare scheme)
- · Better statistical model increase heritability
- · Use of predictor traits

Proposal - increase reliability

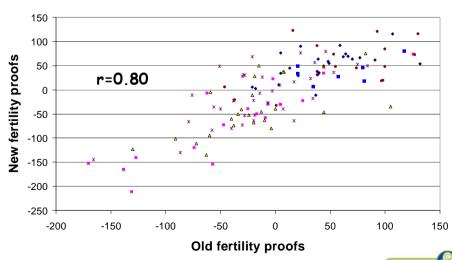
- More data (i.e., more lactations and more recordings
 suckler welfare scheme)
 - Lactations 1 to 10
 - Redefinition of contemporary group across parities
- · Better statistical model increase heritability
 - Better definition of contemporary group for age at first calving
 - Repeatability model
- Use of predictor traits (e.g., live ultrasound measures as predictors of carcass quality)
 - We know body condition score (i.e., fat) is related to fertility so what about carcass fat?
 - Live-weight, muscularity, docility, price

ICBF.

165

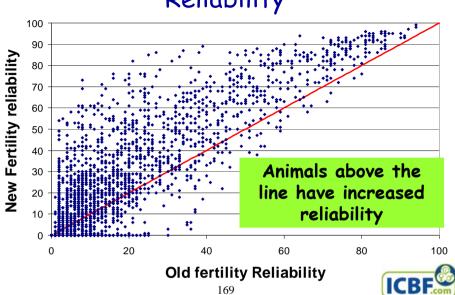
Results

- 1. Repeatability model is a good compromise between biology (i.e., genetic architecture) and more data
- 2. Genetic predictors of fertility
 - Dystocia direct and dystocia maternal
 - · More difficult calving → worse fertility
 - Weanling calf quality & docility (farmer scored)
 - Better quality and docility > worse fertility
 - Good heritability estimates (0.26 to 0.28)
 - Weaning & post-weaning liveweight
 - Heavier animals worse fertility
 - Progeny carcass weight, conformation, and fat
 - Heavier, better conformation and lower fat score -> worse fertility
 - cow milk score and docility score (farmer scored)
 - poorer milkability and docility → poorer survival


ICBF.

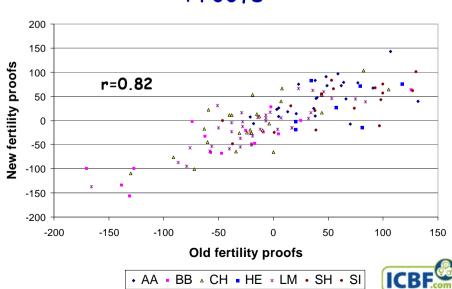
Research

- 1. Increase number of lactations to 10 and reestimate genetic parameters
 - Fertility traits: Age at first calving, calving interval, survival, calving in the first 42 days of calving season (heifers and cows separately)
- 2. Investigate potential genetic predictors of fertility
 - Calving difficulty
 - Linear type traits
 - Cow live-weight, price, and carcass weight, conformation and fat
 - Progeny live-weight, price, and carcass weight, conformation and fat
 - Farmer scored weanling quality and docility
- 8 months computing time large dataset to get good estimates

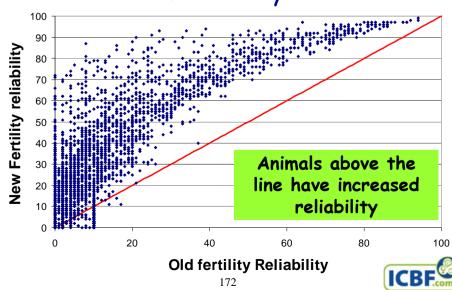

166

Increasing number of parities Proofs (rel. >65%)

Increasing number of parities Reliability


Increasing number of parities Summary

- 3150 AI bulls
- · Good correlation given the changes
 - Lots more data
 - Contemporary group definition
- +9 percentage unit increase in reliability (i.e., 61% increase from $15\% \rightarrow 24\%$)
- Decrease in reliability of some bulls due to stricter definition of contemporary group


ICBF.

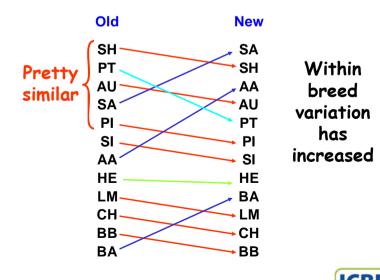
170

Also using predictor traits Proofs

Also using predictor traits reliability

Also using predictor traits Summary

- · 3150 AI bulls
- · Good correlation given the changes
 - Lots more data information from correlated traits
- +19 percentage unit increase in reliability (i.e., 300% increase; 15% → 44%)
- Proofs for 15% more bulls that previously had a reliability of zero
 - Average reliability now of 14% (range: 1% to 72%)


Breed means - old v new evaluations

Breed Old New Ol	
A A 57 54 15	
AA 57 56 17	7 33
AU 94 53 9	24
BA -46 21 10	27
BB -31 -44 13	3 29
CH -1 -6 14	39
HE 44 23 11	24
LM 3 5 23	3 49
PI 89 30 7	18
PT 94 42 7	22
SA 89 63 17	7 38
SH 105 62 12	2 27
SI 63 25 18	3 40

Breed means - old v new evaluations

173

Conclusions

- · Lots more data
 - More parities and traits
- · Increased reliability of proofs
- · More accurate reflection of reality
- · Feedback?

Beef Genomic Selection – update

Donagh Berry¹, Francis Kearney² & Andrew Cromie²

¹Teagasc, Moorepark, Ireland ²Irish Cattle Breeding Federation, Ireland

donagh.berry@teagasc.ie

The Irish Agriculture and Food Development Authority

17

Laboratory progress

- High density SNPchips for 2,688 animals ordered from Illumina
- · 2,141 samples retrieved from Weatherby's archive
 - Remaining from Teagasc/ICBF DNA bank
- DNA extracted from 596 from Weatherbys (42 unusable)

The Irish Agriculture and Food Development Authority

10

Laboratory progress

Previously genotyped: 420

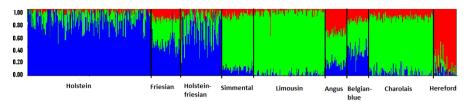
Recently genotyped +391

· Call rate: 99%

Software development

- · Multi-breed genomic selection
- Testing phase

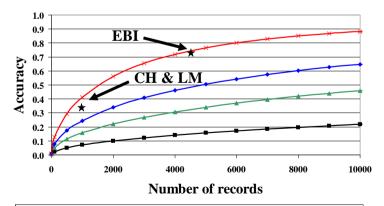
International experience - other


- · New Zealand (dairy)
 - HD chip has 777,000 SNPs
 - Simulations suggest need >300,000 for across-breed
 - After edits 329,000 SNPs
 - Holstein → Jersey: prediction possible
 - Jersey → Holstein: not good (small JER pop)
- Australia
 - ~3,000 beef genotypes
 - Multi-breed genomic selection does not work
 - Includes Bos indicus

The Irish Agriculture and Food Development Authority

Comment

· Likely a function of breed similarity



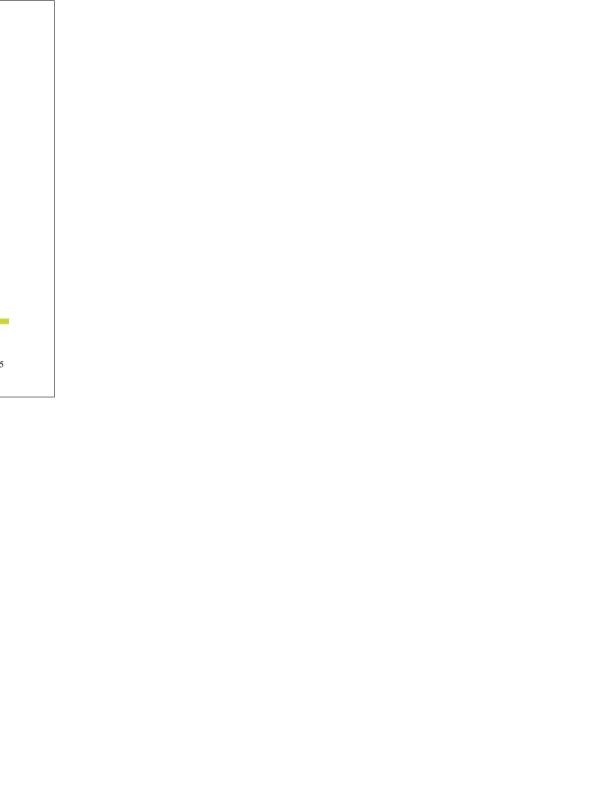
· Will likely be dependent on relationship between training and candidate bulls

The Irish Agriculture and Food Development Authority

International collaboration

$$+h^2=0.03 + h^2=0.15 + h^2=0.35 + h^2=0.90$$

International collaboration


- France Limousins
 - Formalising exchange of LM genotypes
- · UK limousins
 - 700 LM bulls to be exchanged
- · Australia
 - Several different breeds

Conclusions

- Laboratory and computational developments ontarget
- Differing commentary on success of multibreed genomic selection (using current methods)
 - Potential of within-breed selection at least within 2 breeds
 - Will likely be dependent on relationship between training and candidate bulls
- · International collaboration and more genotypes even more vital

The Irish Agriculture and Food Development Authority

