

Current State of Cattle Breeding in Ireland.

UCD Seminar 11th January 2006

Program

- · Introduction Brian Wickham
- · Data & Database Andrew Cromie
- Breeding Objectives Laurence Shalloo & Donagh Berry
- Genetic Evaluations Ross Evans & Francis Kearney
- Genetic Gain Andrew Cromie & Donagh Berry
- Discussion

Introduction - Topics

- Background
- Objective of Seminar
- Philosophy of Cattle Breeding
- Challenges
- Opportunities

Background

- ICBF established in 1998
 - Team of some 30 staff and contractors assembled and funded
 - Cattle breeding database now fully operational
 - Breeding objectives & genetic evaluations operational for wide range of traits and all breeds
 - Breeding scheme changes underway
- Fundamental changes in cattle breeding have occurred and more in near future.
- Overdue for UCD & ICBF to discuss future research and education strategy.

Objectives of Seminar

- Provide an insight into the current state of cattle breeding in Ireland.
- To discuss implications for research, education and extension.

ICBF Strategy for Cattle Breeding

- · Focus on genetic improvement as a tool for improving future profit on Irish cattle farms.
- · Exploit best technology, skills and knowledge available internationally.
- Maintain a comprehensive database of Irish animal performance data.
- · Provide routine, timely, international genetic evaluations for all relevant breeds and traits.
- · Ensure a breeding scheme of optimal design is operating in Ireland.
- Ensure continuous improvement based on excellent science.

Challenges

- Future profitability of Irish beef & dairy farms resulting from cost-price squeeze.
- International competition in farm products and breeding services.

Opportunities

- New information and genetic technologies.
- Modified organisational structures to reduce costs and increase breeding and information service quality.
- ICBF database as a tool for meeting the information needs of farm management and animal health.
- Commercial breeding population & database as source of research data and experimental material.
- Profitable cattle industry serving top-end of world markets for milk and meat products.

Program

- Introduction
- Data & Database Andrew Cromie
- Breeding Objectives Laurence Shalloo & Donagh Berry
- Genetic Evaluations Ross Evans & Francis Kearney
- · Genetic Gain Andrew Cromie & Donagh Berry
- Discussion

Irish Cattle Breeding - Key Stats.

• Dairy cows/herds

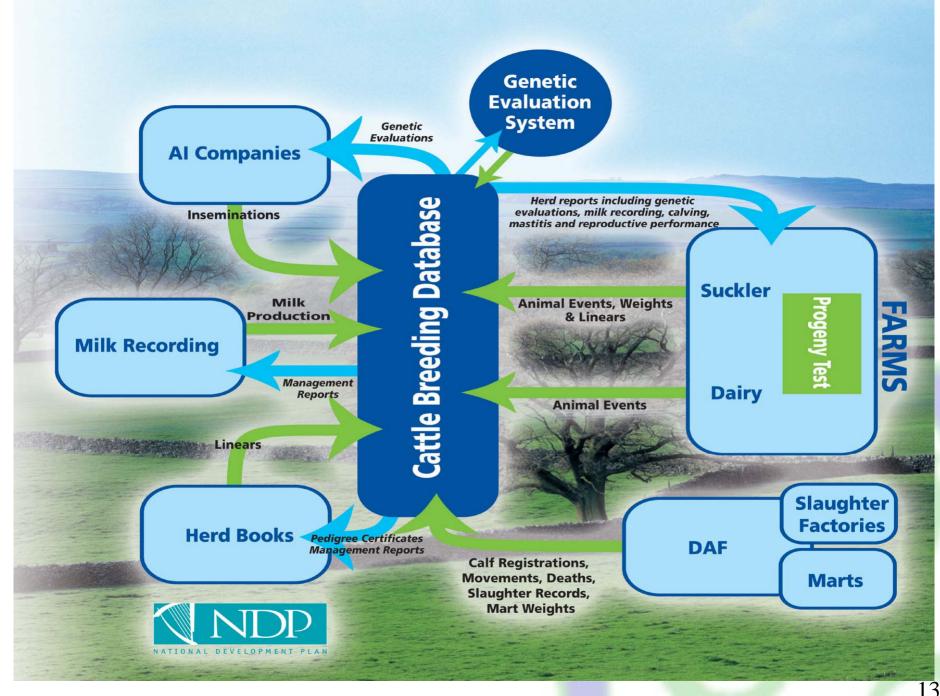
- > 1.15 m cows & 25 k herds.
- ➤ 400 k cows (33%) & 6 k herds in milk recording (24%).

• Beef cows/herds.

- > 1.2 m cows & 75 k herds.
- ➤ 20 k cows (2%) & 6 k herds in "pedigree" beef recording (8%), i.e., linear scoring & weight recording.

• AI (across dairy & beef).

- > Some 800k 1st inseminations.
- > 25% calves born to AI


How do we compare? - Dairy

Country	Total	%	Milk	F%	P%	F+P	% AI	Bulls
	Cows	MR	kg			kg	pen.	tested
Ireland	1.15 m	33%	4,649	3.71%	3.28%	325	35%	30
Norway	250 k	95%	5,639	4.14%	3.27%	418	90%	125
The Netherlands	1.47 m	86%	7,807	4.45%	3.51%	621	86%	225
New Zealand	3.85 m	74%	3,942	4.68%	3.54%	324	75%	300

- Low MR, AI & PT relative to other countries.
- Participation in cattle breeding is reflected in lower milk solids.
- Similar trends for beef (although not as dramatic)
- In future, we must give more focus to cattle breeding.

Increasing data recording.

- Past data recorded in many separate systems.
 - Notebooks, breeding charts, cigarette boxes(!)
 - DAF systems...
 - Industry systems (AI, factories, marts....)
- The cattle breeding database 3 principles:
 - 1. Link all relevant systems into one simple system
 - 2. Make recording easier, e.g., Animal Events & greater use of technology
 - 3. Better management information & more endusers.

The ICBF cattle breeding database

One Database, Many Partners less duplication and cost for farmers

Dates

Signature of herd owner:

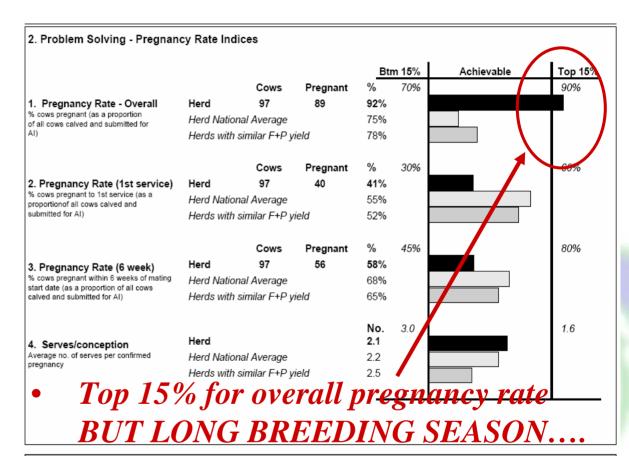
*Please record all calving events. Only those that result in the hirth of a live calf will be used for National Bovine Animal Birth Registration. Those that result in the birth of a dead calf will be used by ICBF for cattle breeding purposes only. Please record dead calves by leaving the calf ID field (last 5 digits of the calf (19) blenk.

New data - Animal Events

	2001	2005
Animal Event Births		535,209
Calving Performance	12,064	435,667
Pedigree registration	85,416	92,560

- Launched in 6,000 milk recording herds (Jan' 02).
- Expanded to further 6,000 beef herds (Jan' 04).
- Further 3,000 commercial beef/dairy herds in 2005
- 15% of total herds & 26% of total births.
- Better data for cattle breeding

Greater use of technology


- Electronic DIY milk recording;
 - No capital cost for farmer.
 - Expanding to 10 cells in 2006 (1,500 herds & 100k cows).
- AI handhelds;
 - Being rolled out nationwide in 2006.
 - Better management data; inbreeding, fertility.....
- Beef linear scores;
 - Operational for 10 scorers (30 k weanlings ped & comm).
- On farm events;
 - Mobile phones, e.g., AI, DRY, MA....
 - Website recording, e.g., DRY
 - Farm packages (& pocket PC's).

Better reports & more end-users

- Past cattle breeding for insurance & premia purposes.
- Must shift focus to *benefits* of "herd recording" for breeding & management purposes.
- All data linked into one system....new and better reports (all data linked together).
 - ➤ Old reports re-developed (milk recording, pedigree certs)
 - ➤ New reports (calving, fertility, SCC/mastitis, factory.....)
- More end-users, e.g., Teagasc advisors, vets....
- Easy access to reports via website (farmers & advisors).
- Text messaging services, e.g., SCC.
- Benefits must outweigh hassle/cost of data recording.

Example - New fertility reports

- Developed with CVERA & Teagasc
- Reports
 available at 9,
 12, 15 & final.
- Key indicators
 - Pregnancy rate
 - > 1st service
 - > 6 weeks
 - Serves per conception

Explanatory Notes.

Performance statistics for your herd are expressed relative to other herds in milk recording (minimum 30 calvings and 10 cows served during period). For example, the pregnancy rate for your herd is currently 92%. This compares with 75% for the average of all herds and 90% for the top 15% of all herds in milk recording.

Summary

- Data recording; first major component in genetic improvement.
- Historical participation in cattle breeding is low.
- Database & structure now in place to increase level of data recording (single simple system).
- Reduce hassle & costs for farmers
- Increase value of output (breeding/management)
- 10 year target = 80% of cows & herds recording.
- Working together it can be achieved.

Program

- Introduction
- Data & Database Andrew Cromie
- Breeding Objectives Laurence Shalloo & Donagh Berry
- Genetic Evaluations Ross Evans & Francis Kearney
- · Genetic Gain Andrew Cromie & Donagh Berry
- Discussion

Breeding objective traits

- 1) Important (economic/environment/welfare)
 - Must quantify importance
- 2) Measurable
 - Optimal method to record
 - Incentives to increase recording
 - Use of predictor traits
 - Need to know genetic and phenotypic parameters
- 3) Heritable
 - Population specific

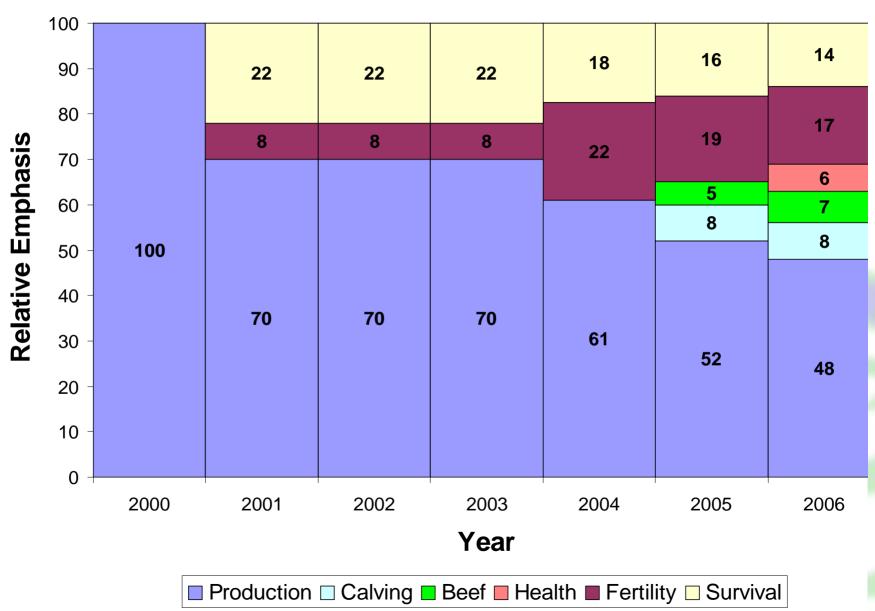
Mastitis - Example

- 1) Important (economic/environmental/welfare)
 - Veterinary costs (callout + labour + medicine + milk withdrawl)
 - Farmer labour

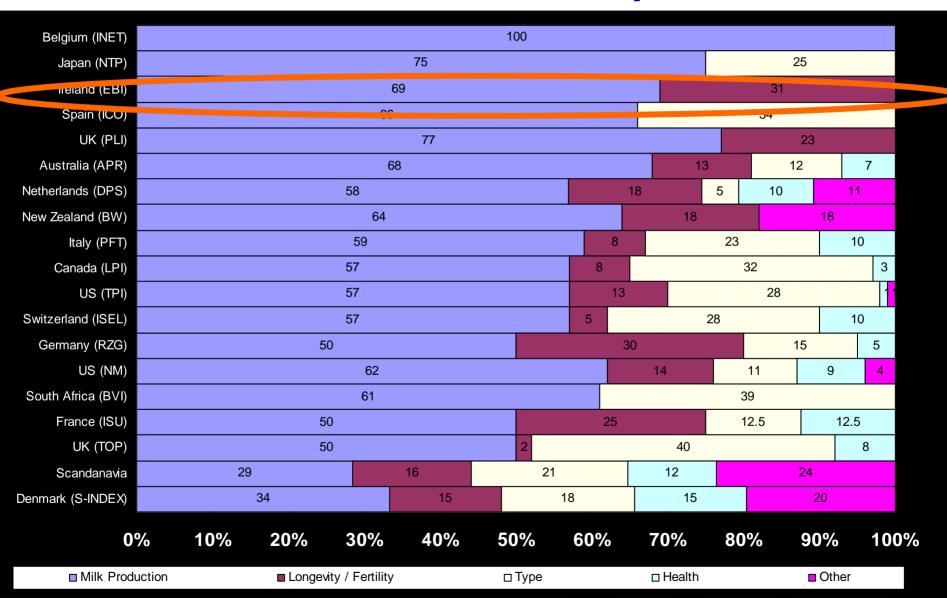
2) Measurable

- Possible to measure BUT currently not!
- How increase recording?
- Predictor traits ??
 - Udder conformation and/or somatic cell count
 - Need to know relationships

3) Heritable


- Probably? ← Incidence?
- Have data on udder conformation and SCC

Economic Breeding index


Launched

- Dairy in 2001
- Beef in 2005
- Increased EBI = Increased Farm Profitability
- Continual development
 - Scenarios changing
 - Continual research

Development of dairy EBI

International Comparison

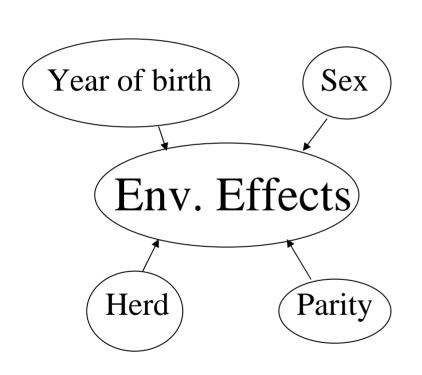
Relative emphasis - Dairy EBI

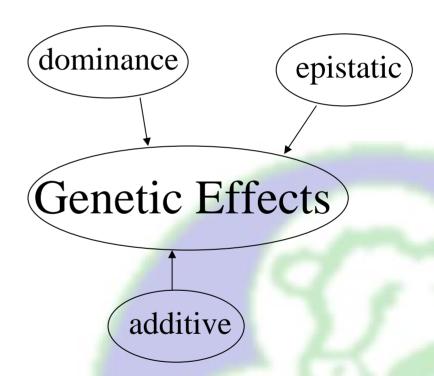
Sub-index	Trait	Economic	Relative	Relative	
		Weight	Emphasis	Emphasis	
Production	Milk	-0.084	-14%		
	Fat	1.55	9%	49%	
	Protein	5.27	25%		
Fertility	Calving interval	-7.17	-17%	32%	
	Survival	10.80	14%		
Calving	Calving difficulty direct	-3.26	-3%		
	Calving difficulty maternal	-1.73	-1%	8%	
	Gestation	-4.47	-3%	070	
	Calf mortality	-2.58	-1%		
Beef	Cull cow	0.04	0.2%		
	Carcase weight	1.38	5%	7%	
	Carcase conformation	5.99	1%		
	Carcase fat	-4.49	-1%		
Health	Lameness	1.13	0.4%	6%	
	Udder Health	-55.48	-5%		

Emphasis based on top 100 sires \rightarrow 59:30:6:3:2

Relative emphasis - Beef EBI

Subinde	K Trait	Economic weight	Relative emphasis
ر ور	Calving difficulty	-3.38	43%
Dairy	Gestation	-7.10	47%
	Calf Mortality	-2.96	10%
if ng	Calving difficulty	-2.22	54%
Beef	Gestation	-1.58	20%
	Calf Mortality	-4.30	26%
Weaned	Weaning weight	1.30	31%
We	Calf quality	1.30	69%
Beef	Weaning weight	1.04	20%
	Feed intake	-21.94	8%
	Carcass weight	2.34	55%
	Carcass conformation	6.24	12%
	Carcass fat	-2.34	5%
Maternal	Survival	3.27	14%
	Calving interval	-2.59	20%
	Age at first calving	-0.59	11%
	Calvign difficulty	-4.32	14%
	Weaning weight	3.30	40%
	Cull cow weight	0.07	2%


Collaborators


- · ICBF team
- · Teagasc L. Shalloo, P. Dillon, D Berry
- Lelystad/Wageningen R. Veerkamp,
 M. Pool
- · Abacus Biotech (NZ) P. Amer
- Dairy and Beef Industry

Program

- Introduction
- · Data & Database Andrew Cromie
- Breeding Objectives Laurence Shalloo & Donagh Berry
- Genetic Evaluations Ross Evans & Francis Kearney
- · Genetic Gain Andrew Cromie & Donagh Berry
- Discussion

- Prediction of breeding values is an integral part of any genetic improvement programme
- Harness the power of information to disentangle environmental and genetic effects
- Phenotype = Env effects+Gen effect+Res effect
 - $-Y_{ij}=u_i+g_i+e_{ij}$

- Additive genetic value is average additive effect of genes received by an individual from its parents
- Interested primarily in additive values as this is component that is transmitted
 - Dominance & Epitasis included in residual term
- Additive genetic value = Breeding Value
 - $-BV_{i} = g_{ai} = 0.5bv_{s} + 0.5bv_{d} + m_{i}$
- Predicted Transmitting Ability(PTA) = 0.5* BV

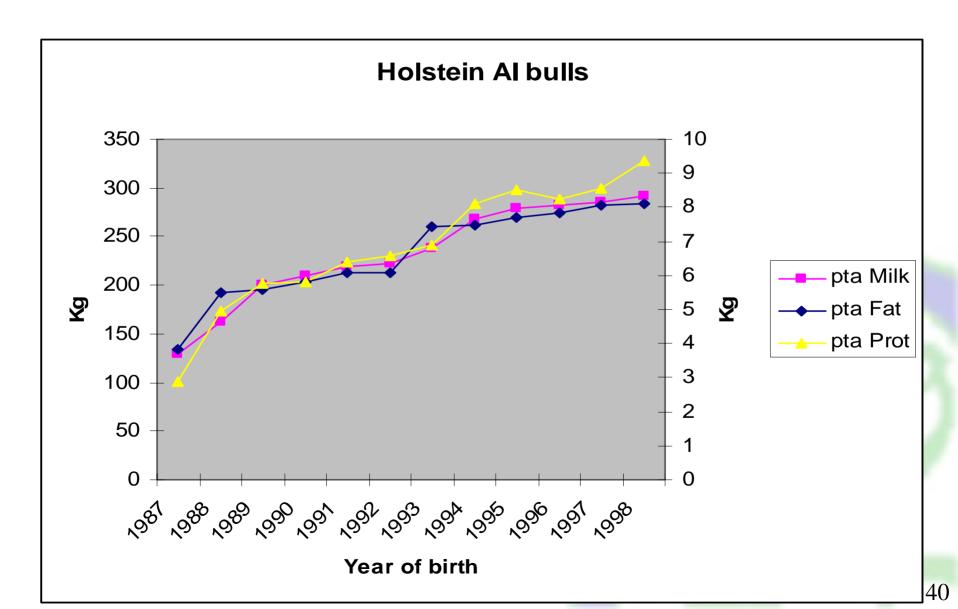
- · Requirements for genetic evaluation
 - Accurate phenotypic information e.g. milk yield
 - Accurate pedigree information
 - Correct statistical model
 - Genetic Parameters e.g. heritability & (co)variance
- Method of evaluation
 - Best Linear Unbiased Predicton (BLUP)
 - Animal model uses information on all relatives
 - Fixed effects and breeding values can be estimated simultaneously

Production

- Univariate evaluations for milk(kg), fat(kg), protein (kg), and somatic cell count
- 305-yields using ISLC (Olori & Galesfoot) for all complete or in progress lactations
- 5 parities used
- Across breed evaluation

Production

- Env effects
 - HYS-parity
 - Year*Mo Calving
 - Age at calving (within parity)
 - Days pregnant during 305d
 - Days dry
 - Heterosis & recombination
- Adjustment for heterogeneity of variance
- \cdot h²=0.35 milk, fat and protein
- $h^2 = 0.11$ somatic cell count


- Evaluation conducted using customised software housed at CR-Delta in NLD
- ~3 days to complete evaluation 4 traits
- Returns solutions of fixed effects and breeding values for ~1.3m animals
- · Different breeds comparable on same scale

Phenotypic means

	No bulls	Dau	Herds	Milk kg	Fat kg	Prot kg	Fat %	Prot %
FR	114	411	102	4734	184.25	160.77	3.89	3.39
HF	88	200	50	4692	181.98	156.95	3.88	3.34
НО	1087	384	180	5776	216.72	190.60	3.76	3.30
JE	10	87	19	4392	217.70	164.70	4.97	3.76
MO	40	125	51	5409	205.28	185.78	3.80	3.44
MY	7	74	27	4786	186.43	168.14	3.90	3.51
NO	4	80	32	4702	187.50	164.25	4.00	3.49
RB	9	162	63	5071	198.89	177.67	3.92	3.50
SI	5	55	17	4692	181.98	156.95	3.88	3.34

PTA means

	No bulls	Dau	Herds	Milk kg	Fat kg	Prot kg	Fat %	Prot %
FR	114	411	102	-180	-3.46	-3.71	0.07	0.05
HF	88	200	50	-75	1.19	-1.47	0.08	0.02
НО	1087	384	180	235	6.77	6.89	-0.03	-0.01
JE	10	87	19	-389	19.60	0.35	0.79	0.31
MO	40	125	51	-67	-3.16	0.13	-0.01	0.05
MY	1	74	21	-343	-9.43	-6.07	0.09	0.12
NO	4	80	32	-357	-7.13	-6.88	0.15	0.12
RB	9	162	63	-237	-4.72	-2.83	0.10	0.11
SI	5	55	17	-75	1.19	-1.47	0.08	0.02

Fertility

- · Two main traits
 - Calving Interval interval between successive calvings
 - Survival Re-appearance from one lactation to the next
- Predictor traits
 - BCS, Angularity, Udder depth
- Parities 1-3
 - Also includes Lifespan accounts for parity3

Fertility

· Phenotypic means

			Survival			ving Inte	rval
GROUP	Number	1	2	3	1	2	3
FR	65172	0.85	0.84	0.82	374	373	373
FR50HO50	25992	0.84	0.83	0.81	380	377	377
FR5075	17454	0.84	0.83	0.81	379	376	377
FR75100	22752	0.84	0.83	0.82	375	374	374
НО	401965	0.84	0.83	0.81	388	387	386
HO5075	48571	0.84	0.83	0.82	378	379	378
HO75100	93710	0.84	0.83	0.81	384	384	382
JE	1844	0.85	0.84	0.88	378	378	379
MO	8514	0.83	0.77	0.68	389	380	376
ND	662	0.87	0.87	0.89	376	381	379
NO	363	0.83	0.84	0.85	375	370	374
RB	2064	0.85	0.87	0.86	372	373	374

Fertility

PTA means

Group	No. sires	No. Dau	SU	SU rel	CIV	CIV rel
FR	2585	56	0.79	0.14	-6.49	0.20
FR50HO50	1277	42	0.47	0.20	-3.40	0.27
FR5075	1461	23	0.45	0.19	-4.50	0.25
FR75100	1406	33	0.79	0.16	-5.61	0.22
НО	6797	69	-0.06	0.21	0.55	0.27
HO5075	2687	34	0.38	0.21	-2.01	0.27
HO75100	2948	40	0.10	0.21	-0.04	0.27
JE	179	11	0.87	0.04	-6.51	0.10
MO	762	11	2.53	0.09	-2.66	0.14
ND	51	18	0.81	0.04	-5.56	0.10
NO	26	19	3.19	0.07	-6.36	0.14
RB	129	26	2.09	0.06	-5.90	0.13

Other sub-indices

- Sub-indices included in EBI for calving, beef and Health
- Emphasis is much lower than milk or fertility
- Can be used as selection criteria to strenghten specific weaknesses

Interbull

- Many bulls have daughters producing in several countries not included in domestic evaluations
- Large trade in international semen want to get an idea of how good a foreign bull might be in Ireland
- Interbull utilises information from all participating counties, provides breeding values on the Irish scale

Interbull

- Eliminates need to develop country specific conversion equations
- Currently we receive Interbull evaluations for:
 - Milk, fat and protein
 - Somatic cell score
 - Longevity
 - Type
- Fertility and Calving in 2006

Future

- Test-day model use of individual test day milk records
 - Better able to account for environmental effects
 - More accurate evaluations
- Identification of new traits of economic importance
 - Mastitis/lameness incidence
 - Environmental traits methane/nitrogen?
- Use of marker information?

Relative emphasis - Beef EBI

Subinde	K Trait	Economic weight	Relative emphasis
ر ور	Calving difficulty	-3.38	43%
Dairy calving	Gestation	-7.10	47%
Ca Ca	Calf Mortality	-2.96	10%
if ng	Calving difficulty	-2.22	54%
Beef	Gestation	-1.58	20%
E	Calf Mortality	-4.30	26%
Weaned	Weaning weight	1.30	31%
We	Calf quality	1.30	69%
u	Weaning weight	1.04	20%
Beef	Feed intake	-21.94	8%
Beef	Carcass weight	2.34	55%
<u> Б</u>	Carcass conformation	6.24	12%
d	Carcass fat	-2.34	5%
	Survival	3.27	14%
a	Calving interval	-2.59	20%
	Age at first calving	-0.59	11%
Maternal	Calvign difficulty	-4.32	14%
Σ	Weaning weight	3.30	40%
	Cull cow weight	0.07	2%

Starting point for Evaluations

Routine extraction of files from ICBF database

Pedigree file: ~8 million animals from 36 different breeds and crosses on Iris database.

Data file: ~4 million records from various sources

Calving performance data – Animal events herds

Linear score data – Linear scoring herds

Weaning weight, calf value – Livestock marts, Linear scorers

Carcass data – Factories

Liveweight, Feed Intake data – Tully performance Test Centre

Data Editing: Microsoft Access and SAS

Pedigree file after edits

Breed	count of main breed
Holstein	1,988,861
Friesian	560,062
Charolais	206,754
Limousine	190,546
Aberdeen Angus	140,512
Belgian Blue	124,367
Simmental	101,744
Hereford	97,247
Montbeliarde	36,025
Shorthorn	11,058
Jersey	9,444
Blonde Aquitaine	7,225
Brown Swiss	1,132

Data file after edits

Trait	Extrac	tion date		
	Jun-05	Nov-05		
height withers	48,876	53,256		
width at withers	47,879	50,066		
length back	47,881	52,246		
pelvic length	47,881	50,063		
width behind withers	47,879	52,246		
loin development	48,872	53,255		
dev hind quarter	48,905	53,285		
Live weight	34,464	35,636		
Carcass weight	133,022	138,255		
carcass conf	132,802	138,035		
carcass fat	132,786	137,998		
cull cow	24,160	26,646		
weaning weight	30,699	32,590		
Feed Intake	1,512	1,778		
Total data records	827,618	875,355		
Extra		47,737		

Predictor traits:

- •Correlated to goal traits
- Heritable
- Measurable
- Available early

Goal traits:

- Economically important
- Heritable

BPSI model

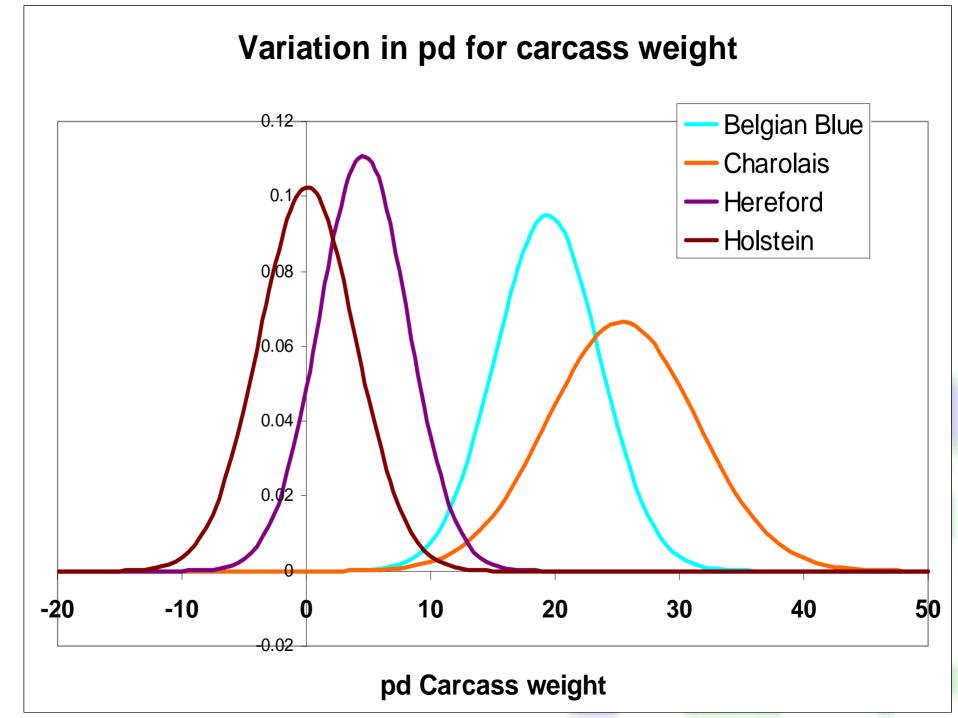
Model - Multivariate Animal Model

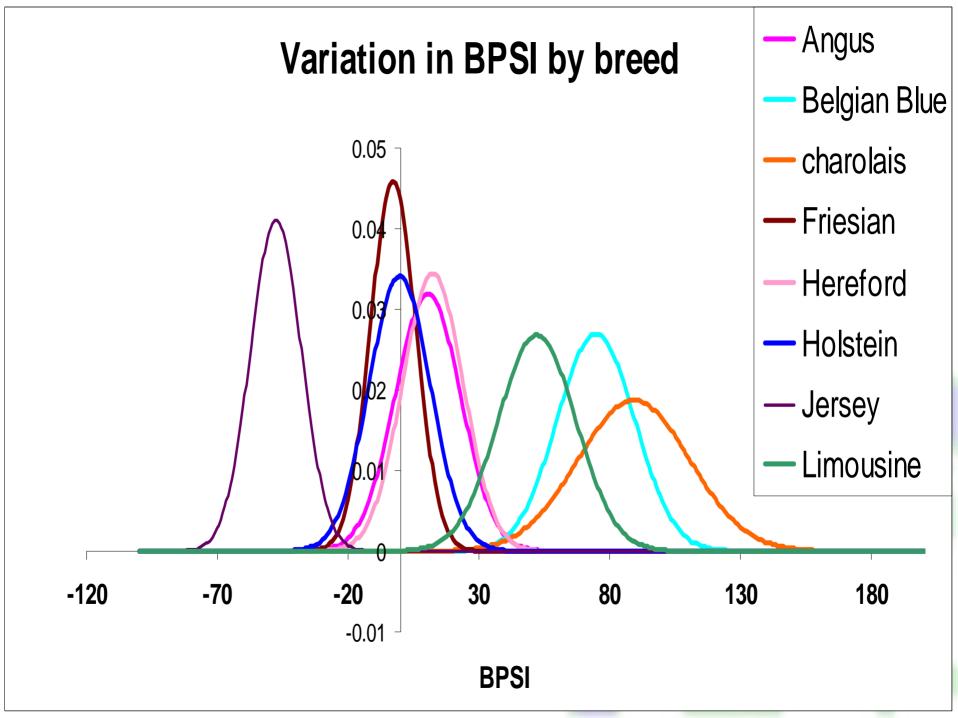
Software - PEST

Breeds - All breeds with sufficient numbers of animals with data including crossbreds hence referred to as an "across breed evaluation"

Pedigree file - oldest animals coded into breed groups

Starting point – animals with data, then include 4 generations of ancestry, finally one generation forward to facilitate parent averages for young stock


Fixed effects: age, herd x year x season, scorer (linear type traits), recombination, heterosis


Base adjustment

102 - Holstein-Friesian sires born between 1988 and 1992 average of 900 carcass records.

Same 102 sires used as base correction for calving traits

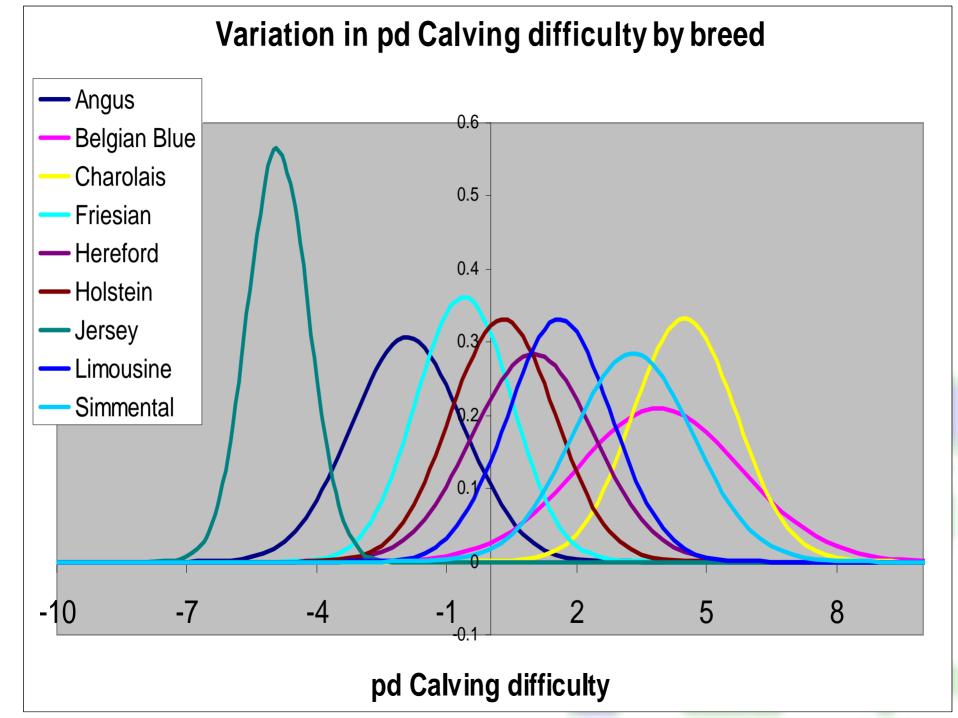
	raw values	<u>pd</u>
Carcass weight (kg)	314	-2.5
Carcass conformation (1-15)	4.36	-0.59
Carcass fat (1-15)	2.89	-0.11
Cull cow carcass weight (kg)	231	+2.12

Calving Performance

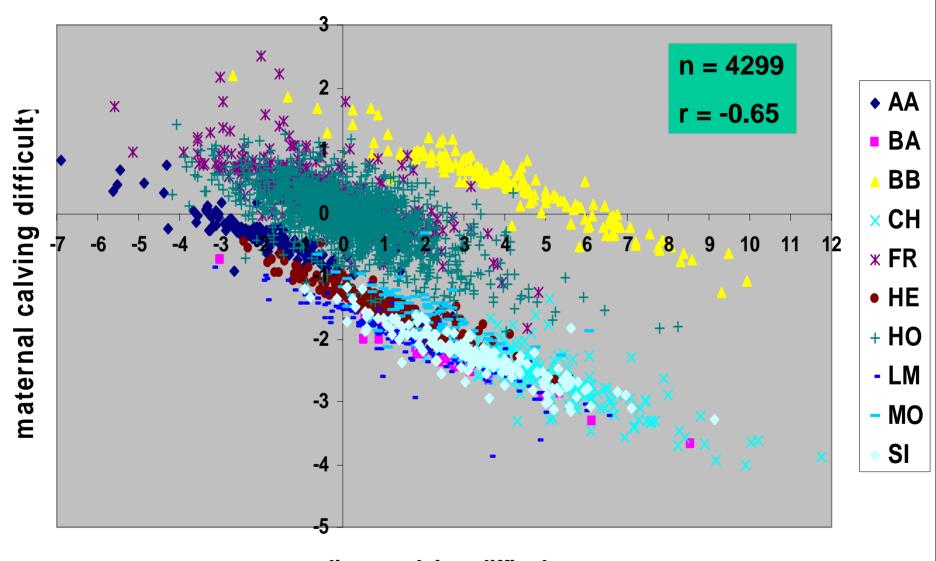
Model - Sire-Maternal grandsire

Software - ASREML

Breeds - Across breed evaluation


Traits evaluated: heritability
direct calving ease 23%
maternal calving ease 4.2%
gestation length 39%
mortality 1.4%

Fixed effects: herd x year x season, breed of dam, parity, sex of calf, heterosis and recombination of dam and calf


Base adjustment

102 - Holstein-Friesian sires born between 1988 and 1992 average of 2880 records available over 4 traits Same 102 sires used as base correction for beef traits

	raw values	<u>pd</u>
Calving ease direct (%3/4)	6.4%	+1.42
Calving ease maternal (%3/4)	7.2%	-3.49
Gestation length (days)	281.9	-1.04
Mortality at birth (%)	5.6%	+0.28

relationship between direct and maternal cdiff

direct calving difficulty

Extreme sires

Low	<u>n</u>	raw value	es pd
Calving ease direct (%3/4) Calving ease maternal (%3/4) Gestation length (days) Mortality at birth (%)	211 316 164 220	2.9% 5.7% 279.9 4.2%	-3.17 -2.54 -1.61 -0.68
High	<u>n</u>	raw value	s pd
High Calving ease direct (%3/4) Calving ease maternal (%3/4) Gestation length (days) Mortality at birth (%)	n 214 310 165 206	15% 14% 289.3 9.6%	 s pd +5.59 +0.76 +5.24 +2.11

Finishing point

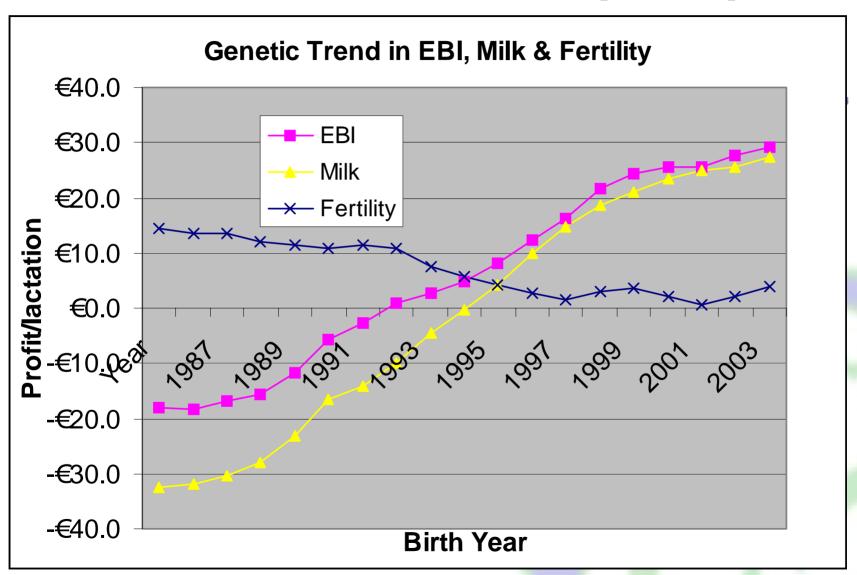
Series of routine checks to ensure evaluation corresponds well to previous:

- Detailed analysis of AI sires with high reliabilities Should expect correlations to increase with increasing reliability
- Check details of proofs which show extreme change to decipher reason for change
- Meet with industry partners to discuss new proofs
- If approved then loading of new proofs back into IRIS to replace existing proofs
- Calculation of herd reports and release to entire industry

Future developments

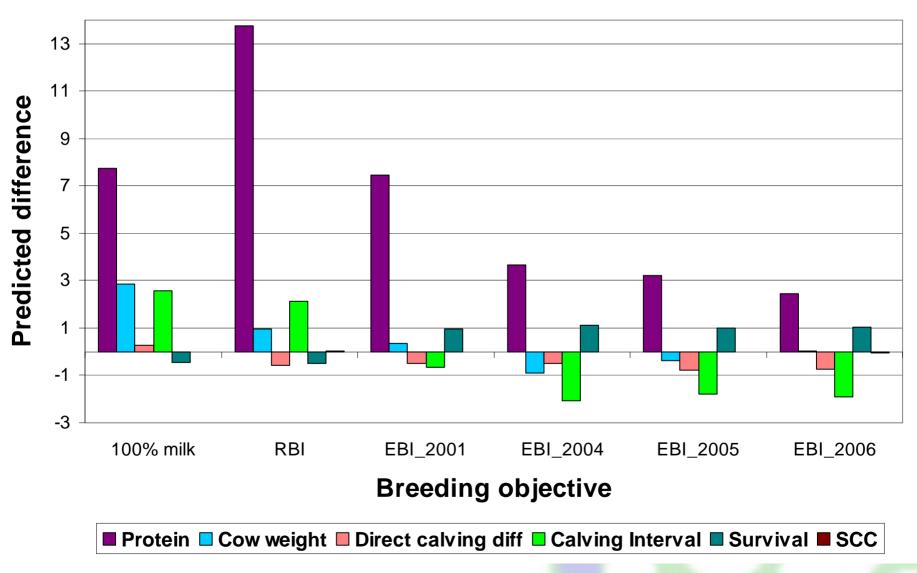
- More automation of evaluation process will lead to more frequent evaluations ~ 2 runs/month
- Development of an across breed evaluation for linear type traits to replace old BLUP within breed evaluation
 well advanced
- Use of indexes in selection of bulls entering Tully
- INTERBEEF: develop an across country evaluation for common breeds similar to INTERBULL for dairy Interested partners include: Ireland, France, Scandinavian countries, UK

Goal: Increase genetic progress through larger gene pool and increased selection intensity

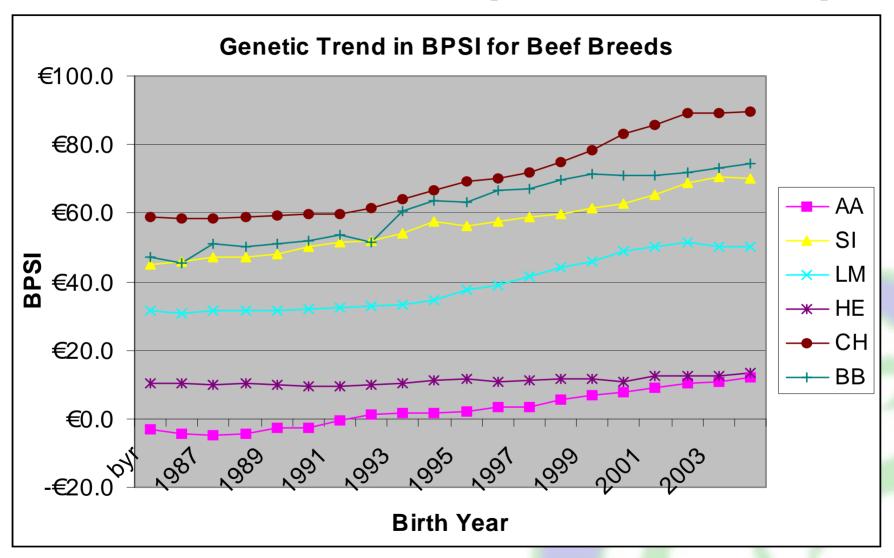

Program

- Introduction
- Data & Database Andrew Cromie
- Breeding Objectives Laurence Shalloo & Donagh Berry
- Genetic Evaluations Ross Evans & Francis Kearney
- Genetic Gain Andrew Cromie & Donagh Berry
- Discussion

Increasing Genetic Gain (€)

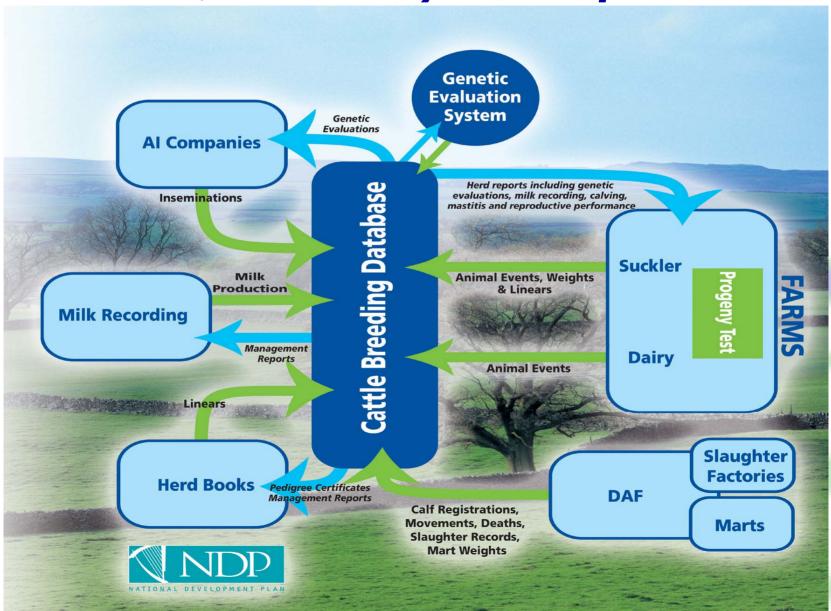

- Increasing Gain 3 simple principles.
 - 1. ID, ancestry & performance
 - Good data & remove duplication (Animal Events, cattle breeding database, link to other systems)
 - 2. Genetic indexes, e.g., Dairy EBI,
 - Index that identifies the most profitable animals for breeding.
 - 3. Optimal breeding programme;
 - Best young bulls are performance/progeny tested
 & top 2/3 bulls returned to AI each year.
- What rate of gains are we currently achieving?

Genetic Gain - Dairy Profit



• Current level of gain = €5/year (20% of optimum)

Genetic Gain in Dairying



Genetic Gain - Beef Carcass Profit

• Current level of gain = €2/year (% of optimum?)

1. ID, Ancestry & Performance

2. Most profitable animals.

	EBI	M kg	F kg	P kg	F%	P%	CI	Total
Top 40	€100	5,740	232	217	4.05%	3.75%	365	
Bottom 40	€34	5,730	215	207	3.75%	3.62%	379	
Difference	€66	10	17	10			-14	
Value		-€1	€ 26	€52			€99	<u>€176</u>

- Pat & Pauline Ryan EBI €100 winner.
- 40 cows with an EBI of €100.
- High EBI cows were €176 more profitable/lactation (or €7,000/year for 40 cows *equivalent to 3 cents/litre*).
- EBI = Profit; High milk solids + Trouble free.
- How quickly do we want to move from high to low....5/6 years (€23/year) or 25 years?

3. Optimal Breeding Program.

- New database + new indexes = new progeny test
 program G€N€ IR€LAND
- Joint initiative involving ICBF, NCBC & Dovea AI.
- ICBF provides progeny test services to AI organisations & farmers, e.g., lists of potential bulls, lists of candidate herds, incentives.....
- Dairy program (launched Spring 2005)
 - Focused on EBI (100 bulls/year * 100 daughters).
- Beef program (to be launched this Spring)
 - Focused on maternal sub-index (10-15 bulls tested per year
 * 100 daughters)
- Industry supported; FBD & MII.

Summary & outlook

- Need "developed breeding program" new top 10 beef & dairy bull each year.
- Playing "catch-up" with our competitors (data recording).
- But strategic advantages;
 - Central database with close links to industry.
 - New indexes linked to profit.
 - Committed dairy & beef farmers.
- Need to set clear genetic gain targets (e.g., €23/cow/year for dairy profit)
- Working together they can be achieved.

Program

- Introduction
- · Data & Database Andrew Cromie
- Breeding Objectives Laurence Shalloo & Donagh Berry
- Genetic Evaluations Ross Evans & Francis Kearney
- · Genetic Gain Andrew Cromie & Donagh Berry
- Discussion