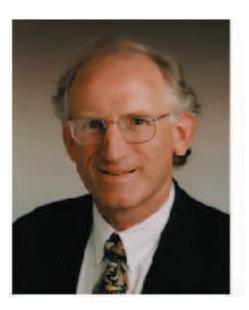


Irish Cattle Breeding Federation Society Limited

Shinagh House, Bandon, Co. Cork, Ireland Tel: + 353 (0) 23 20222 Fax: + 353 (0) 23 20229 Email: enquiry@icbf.com Website: http://www.icbf.com

@ Irish Cattle Breeding Federation Society Limited 2002


	Fore	word	2
	Tully	Elite Performance Test Sale	3
	100000000000000000000000000000000000000	ter 1 – Identification, Registration & Ancestry	4
	1.1.	Department of Agriculture & Food – Cattle Population Statistics	4
	1.2.	Department of Agriculture & Food - National Calf Registration Statistics	5
	1.3.	Irish Cattle Breeding Federation – Calf Registration Statistics	9
	1.4	Irish Cattle Breeding Federation – Herdbook Association Statistics	10
		ter 2 – Dairy & Beef Performance Recording	11
	2.1.	Animal Events – Calving Performance	11
	2.2	Animal Events – Health & Fertility Performance	12
	2.3	Dairy Recording – Milk Recording Performance – Linear Scoring	13
	2.4	Beef Recording – Tully – Beef Recording Performance – Linear Scoring	16
		oter 3 – Breeding Scheme Design & Genetic Gain Organisational Structure	18 18
E	3.2.	Al Usage	19
	3.3 N	lational Progeny Test Program	21
	3.4 G	enetic Gain Dairy	22
	3.5 G	enetic Gain Beef	23

Reference Information

Title: Irish Cattle Breeding Statistics 2002 ISSN: 1649-0991 Date of Publication: 15th September 2003 Editor: Anchew Cromie Printed by: Print Run Limited, Unit 72, Western Parkway Business Park, Ballymount, Dublin 12.

Foreword

The purpose of this publication is to provide the cattle breeding industry with accurate information for decision making. Providing such information is in keeping with ICBPs mission of achieving increased rates of genetic improvement in the national herd. By compiling statistics relevant to the main aspects of cattle breeding I believe that organizations and individuals wishing to make investments in the industry can be better informed when making their decisions and thus achieve better returns on their investments.

In compiling this publication we have endeavoired to cover the key elements of successful cattle breeding including the breeding population, performance recording and current rates of genetic improvement.

The data used in compiling these statistics has come from a number of sources:

- Department of Agriculture and Food.
- Central Statistics Office.
- Heird book Associations.
- Irish Farmers Journal (photos).

The support of these organizations in making data available and in compiling relevant summaries is gratefully acknowledged. This co-operation is a most important contribution to assisting the cattle breeding industry achieving greater effectiveness and efficiency.

For the first time this publication includes a number of statistics derived directly from ICBPs cattle breeding database. The database has consolidated data from many sources and is now providing much more accurate information on individual animals. As a consequence, some of the statistics will change to reflect this greater accuracy. Future publications will make even greater use of the database as a source of statistics for this publication.

Please contact us with any suggestions you have for improvement or requests for greater detail or further breakdown. You are recommended to also refer to the ICBF website (http://www.icbf.com), where further information is freely available.

Brian Wickham Chief Executive

Tully Elite Performance Test Sale 2002 Top Performance Tested Animals in the Simmental, Charolais, Hereford and Limousin Breads

Simmental Bull
Dover Niger

Dover Niger

Dover N bred, Performance Tested Simmental Bull, March 2003.
Pictured with Pat Flood prior to his return to Dover.

He reford Bull

Lisnalurg Vincible

Top Performance Tested Hereford, March 2003.

Purchased by Dovea Al Station for #6000.

Also pictured is his breeder, Peter Casey, Tully Test Centre Manager,

Michael Barron and Noel Ryan, Dovea Al.

Charolais Bull

**Kiloullen Ted*

Top Performance Tested Charolais, March 2009.

Purchased by Progressive Genetics, for €29,000 (Irish record price).

**Also pictured is Michael Bailey, Progressive Genetics, his breader

**Jim Kelly, Tully Test Centre Manager, Michael Barron and Pat Flood.

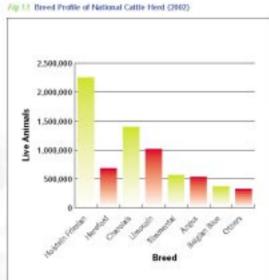
Angus Bull
"Coloagh Union"
Top Performance Tested Angus, March 2009.
Purchased by Dover M Station for #5000.
Also pictured is his breader, Peter Casey, Tully Test Centre Manager,
Michael Barron and Noel Ryan, Dover M.

(i) Department of Agriculture and Food - Cattle Population Statistics

- · 7.1 million live animals
- · Holstein Friesian most prevalent breed

Table 1.1 Age and Gender Profile of National Cattle Herd (2002)

	0-12 mths	13-24 mths	24-36 mths	>36 mths	Total
Male	1,059,899	972,328	230,500	227,201	2,489,928
Female	964,431	780,583	1,523,654	1,315,437	4,584,105
Total	2,024,330	1,752,911	1,754,154	1,542,638	7,074,033


The number of live animals in Ireland, based on data from the Cattle Movement and Monitoring System (as of February 2003), was 7,047,033 (Table 1.1). The majority of these animals were females (some 4.6 million) of which 79% (some 3.6 million) were over 13 months and could be considered as breeding stock. The number of male animals was 2.49 million, the majority of which were under 24 months (about 82%).

The most prevalent breed of animal in Ireland in 2002 was the Holstein Friesian, representing 31.7% of the total population (Table 1.2 and Figure 1.1). This was followed by the Charolais (19.6%), Limousin (14.2%) and Hereford (9.5%) breeds respectively.

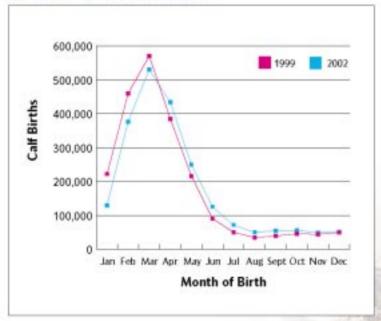
Toble 1.2 Breed Profile of National Cattle Herd (2002).

Breed	0-12 mths	13-24 mths	25-36 mths	>36 mths	Total
Holstein Friesian	491,358	449,822	665,211	636,843	2,243,234
Hereford	180,328	161,762	195,327	133,797	671,214
Charolais	495,612	401,356	243,697	249,649	1,390,314
Limousin	348,719	291,915	206,562	163,517	1,010,713
Simmental	144,441	136,072	149,932	123,905	554,350
Angus	168,310	135,659	104,618	119,213	527,800
Belgian Blue	133,690	126,655	52,714	47,057	360,116
Others	61,872	49,670	136,093	68,657	316,292
Totals	2,024,330	1,752,911	1,754,154	1,542,638	7,074,033

(ii) Department of Agriculture and Food - National Calf Registration Statistics

- Shift in calving pattern within spring and autumn calving herds
- Increasing influence of certain beef breeds
- · High level of crossbreeding in National beef herd
- Shift towards pure-breeding for Limousin, Charolais and Belgian Blue breeds

Tatio 1.3 National Bovine Calf Registration Figures, by Month (1997-2002)

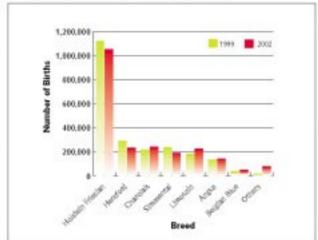

	1997	1998	1999	2000	2001	2002
January	283,531	290,593	222,503	162,109	163,815	129,419
February	484,195	529,306	460,217	393,117	376,301	376,448
March	578,726	577,038	570,908	553,566	506,891	530,864
April	390,882	382,679	384,458	426,992	411,497	434,430
May	210,599	217.493	216,243	261,472	258,961	250,320
June	101,353	92,945	90,541	98,460	126,109	125,677
July	56,714	55,151	50,108	56,719	63,918	71,660
August	42,155	41,216	34,682	40,342	43,501	49,944
September	47,462	45,771	39,034	44,047	50,121	54,496
October	58,273	53,993	45,993	46,469	51,352	56,178
November	55,745	53,810	44,448	43.906	50,167	49,090
December	75,525	85,533	49,031	45,389	50,184	51,600
Total	2,385,160	2,425,528	2,208,166	2,172,588	2,152,817	2,180,126

The total number of calves registered in the National Calf Registration Database in 2002 was 2,180,126 (Table 1.3), an increase of about 1.3% (+27,309 births) compared to 2001.

The seasonal nature of calf registrations in Ireland was again evident in 2002, with over 73.0% of all calves registered in the months February, March, April and May (some 1.6 million calves in total).

Trends in the seasonality of calf births (Figure 1.2) suggest a definite shift in calving pattern towards later spring and earlier autumn calving (probably reflecting the impact of F&M on the 2001 breeding season). For example, the % of cows calving in the months of April and May was 27.2% in 1999 compared to 31.4% in 2002, an increase of 84,049 births. Similarly the number of calves born in the months of August to October was 5.4% in 1999 compared to 7.4% in 2002, an increase of 40,909 births.

Fig 1.2 Trends in Seasonality of Call Births (1999 vs. 2002)


Public 5.4' Analysis of Call Births by County and by Breed Type (2002)

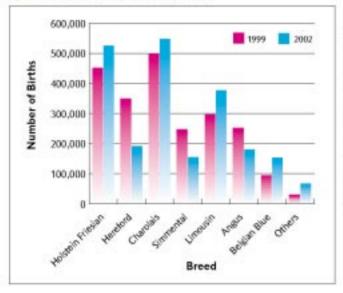
COUNTY	Beef Births	Dairy Births	Total
CARLOW	21,562	4,637	26,199
CAVAN	66.166	18,158	84,324
CLARE	97.893	14.509	112,402
CORK	213,724	137,306	351,030
DONEGAL	53,455	8.522	61.977
DUBLIN	4,983	1,545	6,528
GALWAY	125,183	14,969	140,152
KERRY	96,403	50,781	147,184
KILDARE	23.398	6,765	30,163
KILKENNY	64,540	24,150	88,690
LAOIS	47,269	14,168	61,437
LEITRIM	34,323	1,178	35,501
LIMERICK	81.300	50.099	131.399
LONGFORD	34,547	3,798	38,345
LOUTH	14,917	8,312	23,229
MAYO	97,347	11,534	108,881
MEATH	50.870	24,196	75,066
MONAGHAN	47,803	20,238	68,041
OFFALY	41,426	10,228	51,654
ROSCOMMON	61,947	2,749	64,696
SLIGO	41,272	4,771	46.043
TIPPERARY	120,711	56,482	177,193
WATERFORD	53,125	25,246	78,371
WESTMEATH	43.608	8,117	51,725
WEXFORD	57,292	21,860	79,152
WICKLOW	30,762	9.982	40.744
TOTALS	1,625,826	554,300	2,180,126

Analysis of calf birth by county and by breed type (Table 1.4) indicates that Cork, Tipperary and Kerry were the 3 largest counties in Ireland, based on number of calf births in 2002. The number of calves born in each of these counties was 351,030 (16.1%), 177,193 (8.1%) and 147,184 (6.7%) respectively. Similar trends were apparent for breed of calf, with Cork, Tipperary and Kerry being the largest counties for dairy births, whilst Cork, Galway and Tipperary were the largest counties for beef births.

The Holstein Friesian breed was by far the most dominant breed of dam in 2002, with over 48% of all calves being born to dams from this breed (Table 1.5). The next most popular breed, in terms of breed of dam, was the Charolais (10.9%), Hereford (10.5%) and Limousin (10.0%) respectively.

Fig. 7.3. Analysis of Calf Births, by Breed of Dam (1999 vs. 2002).

Tobic 5.5. Analysis of Call Births, by Breed of Dam (1997-2002)


	1997	1998	1999	2000	2001	2002
Holstein Friesian	1,226,643	1,216,800	1,116,640	1.092,785	1,042,184	1,049,057
Hereford	333,156	336,996	285,673	261,047	246,966	229,058
Charolais	209.972	230,043	212,700	214.509	225,595	238,973
Simmental	245,968	263,030	235,068	184,901	188,704	187,058
Limousin	173,667	189,966	179,424	187,765	203,637	219,627
Angus	129.324	140,870	131.423	132.042	139,047	139.609
Belgian Blue	29,566	34,293	33,496	35,819	39,046	44,101
Other	36,864	13,530	13,742	63,720	67,638	72,643
Totals	2,385,160	2,425,528	2,208,166	2,172,588	2,152,817	2,180,126

Looking at trends over time (Table 1.5 and Figure 1.3) indicates a slight reduction in the number dams recorded as Holstein Friesian (-67,583 or -6.1% over the 4-year period 1999-2002). The reduction was even more apparent for the Simmental and Hereford breeds (-20.4% and -19.8% respectively). This is in contrast to the Belgian Blue. Limousin and Charolais breeds, which all reported an increase in the number of dams registered over the same period (+31.6%, +22.4% +12.4% respectively).

	1997	1998	1999	2000	2001	2002
Holstein Friesian	589,900	507,105	449,478	468,495	501,317	523,084
Hereford	337,245	389,564	348,030	270,942	197,611	188,850
Charolais	543,138	551,566	497,959	519,960	541,917	545,069
Simmental	271,621	281,067	245,732	190,721	162,759	153,614
Limousin	289,067	307,608	295,647	336,538	359,656	374,041
Angus	213,968	269,555	250,844	194,098	166,216	178,442
Belgian Blue	83,942	91,796	92,632	136,797	166,243	151,182
Others	56,279	27,267	27,844	55,037	57,098	65,844
Totals	2,385,160	2,425,528	2,208,166	2,172,588	2,152,817	2,180,120

/lar Lal Analysis of Calf Birth, by Breed of Sire (1999-2002)

The Charolais breed was the most dominant breed of sire in 2002, with 25.0% (545,069) of all calves registered, being by sires from this breed (Table 1.6 and Figure 1.4). The next most popular breed, as a breed of sire, was the Holstein Friesian (24.0%), followed by the Limousin (17.1%), Hereford (8.6%) and Angus (8.1%) respectively. Trends in sire breed over time (Figure 1.4) also underline the increasing importance of the Belgian Blue, Charolais and Limousin breeds within the National herd, which each of these breeds reporting a steady increase in the number of calves registered.

Breed combinations indicate the extent of pure-breeding and crossbreeding within the National dairy and beef herds (Table 1.7). The number of calves with both a Holstein Friesian sire and dam in 2002 was 513,652. This was in comparison to 735 for the Jersey breed, 3,837 for the Montbelliarde breed and 2,010 for Red breeds (i.e., Rotbunt, MRI and Scandinavian Reds). Looking at trends in crossbreeding indicates that some 1,696 calves were the progeny of HF * Jersey crosses, 14,254 were the progeny of HF * Montbelliarde crosses and 7,412 were the progeny of HF * Red crosses. Based on these breed combinations, this suggests that 23,362 crossbred dairy calves were born in 2002 (or about 4.3% of the total calves born to these breeds).

In contrast to dairy breeds, the level of crossbreeding in beef breeds is much higher. For example, the number of calves with both a Charolais sire and dam in 2002 was 155,645. Equivalent figures for other beef breeds were 92,288 for the Limousin breed, 37,830 for the Simmental breed, 34,507 for the Hereford breed and 25,292 and 8,321 for the Angus and Belgian Blue breeds respectively. Based on these breed combinations, there were 353,883 "pure-bred" (i.e., 3/4 bred or greater) born to these breeds. The comparable figure for crossbred progeny from these breeds (and their combinations) was 680,340 calves, suggesting that some 66% of beef calves born to these breeds are crossbred and 34% are 3/4 bred or greater.

Table 1.7 Breed Combination of Calmy (2002) 51 3 pec 513 1468 922 990 387 1959 942 399 503,054 15 427 HE 127985 34507 4,957 5925 5 pos 4,791 108 613 1 920 188,880 СН 51,741 90633 155,645 76,700 75,568 56,338 913 15,387 576 970 16,336 754 545,069 Я 63 153,614 20392 11,690 2601 474 57,902 11 780 37,830 7,745 255 27 275 224 250 126 90,724 51 66 9 42 759 40,715 92,255 30740 752 11,963 75 MI 668 492 9 795 770 374,040 XX. 102999 7,688 7346 25.292 134 2917 131 1.190 493 151 300 178,442 11 200 T 980 2 752 BA 1,269 2710 768 1,548 1,054 1766 1 261 346 27 13 000 9741 88 69,666 12 783 13,451 17,834 10950 300 3,727 444 151 772 2 705 JE 1,339 2752 0 3 2 738 32 0 3 14 940 13,002 145 60 65 17,950 279 45 3,037 92 RW 6 400 34 29 129 33 60 \$ 17 12 106 2,010 49 45 9935 Sk 681 609 16 363 541 305 394 594 \$ 134 30 215 3321 570 я 386 15,681 2 260 14 38 1,905 457 907 1 254 1,427 17 50 6,300 Other 18 46 1,318 6032 Total 219,627 159,609 1,691 45,461 2,180,126 1,049,057 229,055 255,975 187,058 5,75.59 44,101 9,755 5,955 2,742 5,147

Addr 5.9 Trends is Bread Condinations (1999 st. 2002)

							88 9r
HF Dam 99	442 296	1 48 ,201	241,444	57,688	86 A62	84,485	48,296
HF Dam 02	513 65 2	108,999	127,985	51,741	57 902	90,724	69,656
A A Dam 99	886	95.588	7,492	46,667	13 3 46	21,911	5,272
A.A. Dam 02	990	25 292	4791	56,338	7,845	30 140	10,950
HE Dam (V)	1,990	22 962	60,747	98,517	38 3 70	51,621	10,887
HE Dam 02	1,648	11 700	34,507	90,635	20 3 92	51,669	14,008
CH Dam 99	633	12568	8914	134133	18 6 89	29,351	8 162
CH Dam 02	513	7,685	4987	158 648	11 780	42,859	12,358
SI Dam (V)	1,610	18 #02	14,730	85,490	64763	37,830	11,481
SI Dam 02	1,468	7,346	5 9 25	76,785	37 8 30	40,815	13,431
U Dam 99	840	13 337	11,213	62,849	19 044	62 103	9,761
LI Dam 02	922	8,950	5 8 05	78,558	11 690	92,288	17,894
BB Dam W	413	3,612	2 489	11,633	4,095	7224	6,769
BB Dam 02	481	2,917	1 471	15,387	2,601	11,953	8,321

Looking at trends in purebreeding and dios breeding over time (Table 1.8 and Figure 1.5) indicates a large increase in the number of 3/4 bred animals for a number of the beef breeds, notably Charolais (+21,512 calves or +16.0% compared to 1999), Limousin (+30,185 calves or +48.6%) and Belgian Blue (+1552 calves or +22.9%). This again reflects the growing influence of these breeds in the National beefherd.

The declining role of the traditional beef breeds (i.e., Hereford and Angus) is further underlined when looking at trends in the use of beef breeds on both HF cows and beef cows (Figures 1.6 and 1.7). The number of calves born to "traditional" beef sires from Holstein Friesian cows dropped by some 147,661 (-38.4%) in 2002 compared to 1999. Similar trends are also apparent for beef cows (Figure 1.7) where the number of calves born to sires and dams of the traditional beef breeds dropped by 50,499 (-39.8%) compared to an increase of 56,728 (+9.9%) for sires and dams from the continental beef breeds.

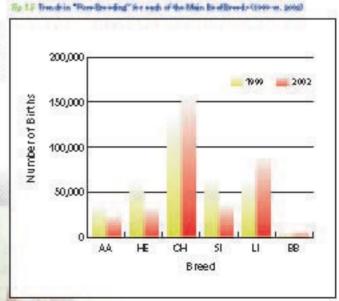
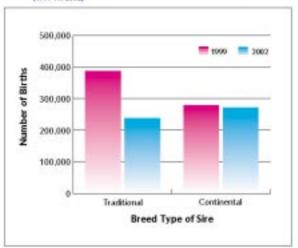



Fig. 1.4 Trends in Use of Traditional and Continental Beef Sires on HF Dairy Cows. (1999 vs. 2002)

700,000 600,000 500,000 300,000 200,000

Trad*Cont

Breed Type of Sire & Dam

Cont*Cont

I Trends in Use of Traditional and Continental Beet Sires on Beef Cows.

Tobar 1.9 Animal Event Registrations (2002)

	Number	% Total
Animal Event Registrations	283,967	
Live Births	268,291	94.5%
Dead at Birth	12.219	4.3%
Abortions	3,457	1.2%
Males	142,684	50.9%
Females	137,826	49.1%
Registrations via Sheets	243,130	86.7%
Registrations via Emails	37,380	13.3%
With Valid Sire	222,236	79.2%
With Valid Al Sire	145,599	51.9%

(iii) Irish Cattle Breeding Federation -Calf Registration Statistics

283,967 Animal Event births in 2002

Trad*Trad

· 79% of births with sire information

The Animal Events System for Calf Registration was first launched in January 2002. It is currently operational in some 5,500 milk recorded herds. The number of calf births registered through Animal Events in 2002 was 283,967 (Table 1.9). This represents some 13.0% of all calves registered through the National calf registration database (Fig. 1.8). Of the events registered, 243,130 (86.7%) were registered via Animal Events sheets, whilst a further 37,380 (13.4%) were registered via emails (Figure 1.9). The number of Animal Event registrations with valid sire information was 222,236 (79.2%) of which 145,599 were the progeny of Al sires (Figure 1.10).

Fig. 1.8 Animal Event Births as a % of Total Births

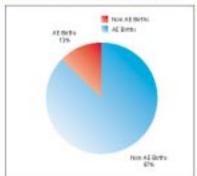


Fig 1.9: Comparison of Recording Method (2002)

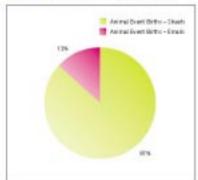
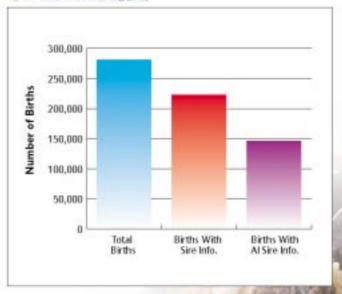



Fig 3.38 Trends in Size Recording (2002)

(iv) Irish Cattle Breeding Federation - Herdbook Association Statistics

- 7% increase in pedigree registrations
- 1% increase in herdbook membership

A total of 91,012 calves were registered with 17 different herdbooks in Ireland during 2002 (Table 1.10). This represents an increase in total herdbook registrations of 5,596 (up some 6.6% compared to 2001). The number of herds involved herdbook activities in 2002 was 11,370, which represents a slight increase compared to 2001.

Tible 1.10 Number of Birth Registrations and Members by Breed Society (1997-2002)

Herbook Association														
Belgian Blue Cattle Breeding Society	329	107	333	127	369	135	420	153	296	1114	742	363	379	258
Jersey Cattle Society of Ireland	175	16	156	14	18.1	15	124	10	189	13	350	7	343	- 17
hish Aberdem Angus Association	1,479	351	1,623	379	1,649	376	1,501	356	1,512	439	1,547	#22	725	445
hish Angus Cattle Society	3.4	100	3,011	950	2,216	933	2,200	890	2,300	860	2,500	1,126	1,274	900
hich Aubrus: Cattle Society		7.60	15	10	27	14	78	16	107	21	128	58	10	25
init Blande d'Aquitaine Breed Co-op Ltd	254	14	387	75	202	78.	264	85	266	90	212	.84	128	90
rish Charolais Cattle Society	7,626	1,941	7,689	2,124	1,402	2,268	9,645	2.524	10,921	2.965	11,343	5,662	5.661	3,007
rish Hereford Breed Society	4,196	826	4.445	961	1.637	892	2,840	730	2,516	735	2,768	1,616	1,152	596
rish Holstein Friesian Association	42,793	3,435	45,254	3,542	49,797	3,630	55,231	1,142	57,452	3,513	60,593	4201	16,390	3,439
hish Limousin Cattle Society Ltd	3,379	878	3,762	984	4.306	1,050	5247	1,474	6,162	1,704	6,586	3,283	3,303	1,824
hish Normande Cattle Society		41	129	20	122	21	50	7	35	7	117	2	115	11
hish Pierrontese Cattle Society Ltd	22	13	10	13	37	11	40	12:	38	15	- 44	11	33	-20
hish Simmental Cattle Society Ltd	1,694	900	1,712	540	2,772	795	2,782	820	2,515	529	2,320	1,225	1,097	464
Kerry Cattle Society of Ireland		+111	.+.	(+)	135	90	146	101	108	22	176	42	134	36-
Meuse Rhine had Cattle Society	145	71	126	74	91	88	269	23	255	27	194	23	171	33
Montbelliard Cattle Society	174	+15	353		390	13	559	65	570	67	1,017	416	681	120
Saler Cattle Society	- 4	30	+	42	-	55	195	65	150	72	265	100	185	- 63
Total	63,726	9,352	79,828	9,951	74,553	10.526	81,471	10,675	85,416	11,263	91,012	19,251	71,763	11,37

Fig. 3.11 Number of Birth Registrations (1997-2002)

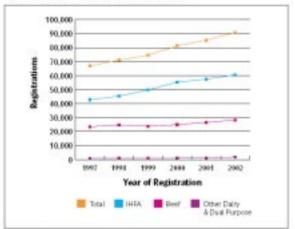


Fig. 1.72. Number of Birth Resistrations (1997-2002).

Irish Holstein Friesian Association was the largest registering herdbook in 2002, with 60,593 of the total registrations being within this herdbook (66.6%). This was followed by the Charolais herdbook (11,343 registrations), the Limousin herdbook (6,586 registrations) and the Hereford herdbook (2,768 registrations). Total membership was also largest for the Holstein Friesian herdbook (3,439 members).

Looking at trends in herdbook activities over the past 6 year period indicates a steady increase in herdbook registrations over that period (Figures 1.11), from a low of 63,726 registrations in 1997 to 91,012 in 2002 (an increase of some 42.8%). This increase is due to largely to the increased activity of the IHFA herdbook, with the rate of increase being somewhat smaller for the beef and other dual purpose/dairy breeds. A different trend is seen in overall membership, with the number of members increasing most rapidly for the beef herdbooks correspond to the other dairy and dual-purpose breeds (Fig 1.12).

(i) Animal Events - Calving Performance

- · 4.3% mortality in Animal Event herds
- 18-fold increase in % of calving survey records
- Large variation in calving performance within breeds

Nable 2.1 Animal Events - Trends in Mortality & Calving Performance (2000):

	Numbers	% Total
Registrations	283,967	
Live Births	268,291	94.5%
Dead at Birth	12,219	4.3%
Abortions	3,457	1.2%
With Calving Survey	215,881	77.0%
- No Assistance	149,251	69.1%
- Some Assistance	52,459	24.3%
- Considerable Difficulty	9,744	4.5%
- Veterinary Assistance	4,427	2.1%

/cg 23 Animal Events - Trends in Mortality (2002)

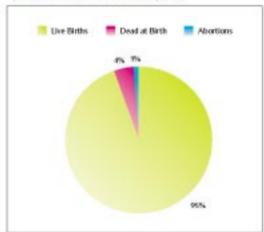
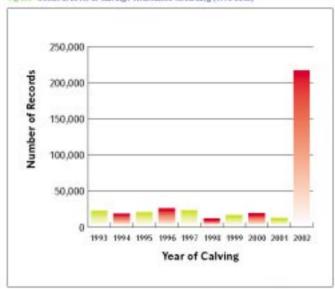


Fig 2.7 Animal Events - Trends in Calving Performance (2002)



Based on data from Animal Events, the number of calves registered as "dead at birth" in 2002 was 12,219 records, or 4.3% of the total calves registered (Table 2.1 and Figure 2.1). In addition, a further 3,457 records were registered as abortions

The total number of Animal Event records with calving survey data in 2002 was 215,881, or 77% of the total calved registered (Table 2.1). Of this number, 14,171 were registered as either considerably difficult or requiring veterinary assistance, some 6.6% of the total records with calving survey data (Figure 2.2).

Looking at trends in calving performance (Table 2.2 and Figure 2.3) indicates that as a consequence of the introduction of Animal Events there was an 18-fold increase in the level of calving performance recording, from 12,064 in 2001 to 215,881 in 2002.

Fig 2.3 Trends in Level of Calving Performance Recording (1993-2002)

	No. Reco
1993	21,903
1994	17,855
1995	20,152
1996	25,048
1997	22,489
1998	10,996
1999	15,837
2000	18,183
2001	12,064
2002	215,881

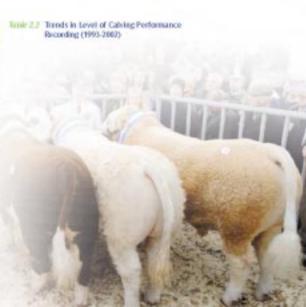


Table 2.1 Comparison of Mortality and Calving Performance for Various Breech (2002)*

Breed of Al Sire	Progeny Records		% Mortal	% Mortality - Dead at Birth			% DIff/Vet Assist Births		
			Average	Max	Min	Average	Max	Min	
Angus	6,893	21	4.0%	8.7%	0.0%	5.0%	10.3%	0.0%	
Belgian Blue	9,575	25	3.4%	6.7%	0.0%	8.0%	17.5%	1.3%	
Friesian	12,279	29	2.3%	8.1%	0.0%	3.8%	8.0%	0.0%	
Hereford	1,958	13	2.2%	9.8%	0.0%	4.1%	11.4%	0.0%	
Holstein	108,020	231	2.9%	12.0%	0.0%	5.9%	28.8%	0.0%	
Jersey	591	5	6.9%	10.5%	1.9%	2.0%	4.0%	0.0%	
Limousin	3,036	12	3.1%	6.5%	0.0%	7,6%	15,4%	3.8%	
Montbelliarde	2,755	14	3.0%	5.6%	0.0%	7.9%	18.1%	0.0%	
Rotbunte	666	6	2.8%	4.8%	1.8%	3.7%	6.3%	0.0%	
Norwegian Red	1,445	5	2.8%	5.0%	0.0%	3.6%	8.3%	1.4%	

^{*} Based on Sires with a Minimum of 50 Progeny Records

A comparison of breeds (Table 2.3 and Figure 2.4) suggests some differences between breeds for average mortality and % calving difficulty. For example, the breed of Al sire with the highest mortality level was the Jersey breed (6.9%), compared to 2.2% for the Hereford breed. Comparable figures for calving difficulty were 8.0% for the Belgian Blue and 2.0% for the Jersey breed.

Whilst differences between breeds were relatively small, variation within breeds was somewhat larger, with all breeds indicating a large range in calving performance for each of these traits (Table 2.3 and Figure 2.5).

(ii) Animal Events - Health and Fertility Performance

- New health and fertility performance data
- Mastitis incidence most prevalent health trait
- Some 350,000 insemination events recorded

A total of 36,869 health events and 4,423 culling events were recorded through Animal Events in 2002 (Table 2.4 and Figure 2.6). This is the first time such events were recorded as part of a National recording program in Ireland. The most prevalent health recorded events were mastitis (31.1% of the events recorded), parasitic infection (24.1%) and handness (4.9%). The most prevalent reason for culling animals was infertility (33.6% of the events recorded) and old age (12.9%).

Fig 3.4 Comparison of Cabring Performance for Various Breeds of Al Sire (2002)

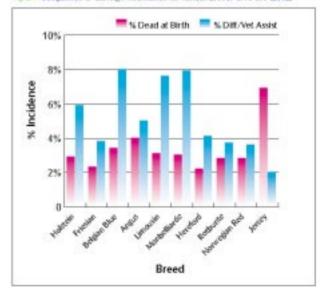
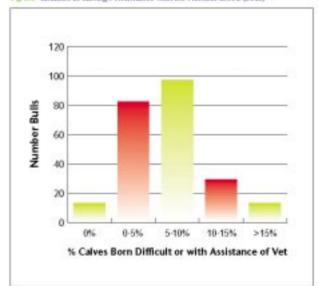



Fig 2.5 Variation in Cahring Performance with the Heistein Broad (2012)

Ashir 24 Recording Health and Fertility Events (2002)

(2002)	
	Record
Health/Fertility Events	36.869
- Mastitis	11,471
- Parasitic Infection	8,880
- Castration	7,974
Lameness	1,824
- Retained Plascenta	1,346
- Respiratory Disease	995
- Milk Fever	622
Scour	572
- Ketosis	360
- Other Events	2,825
Culling Events	4,423
- Infertility	1,486
- Old Age	573
- Poor Health	455
- Low Yield	329
- Injured	277
- Feet & Leg Problems	256
- Others	1,047

The number of insemination events and non-service heat events recorded in the cattle-breeding database in 2002 was 370,074 (Table 2.5). Of these events, 232,520 were from the technician Al service (62.8%), with the remainder being recorded through Animal Events as DIY inseminations (117.871) and non-service heats (19,683).

Fig. 2.6 Recording Health and Fertility Events (2002)

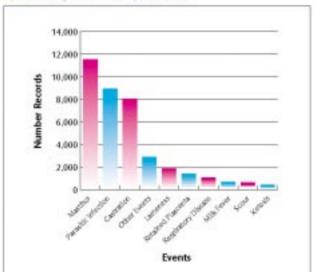
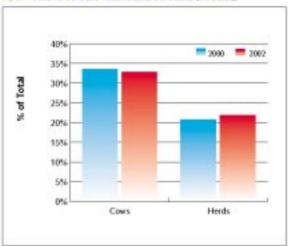


Table 25 Recording Insemination and Non Service Heat Events (2003)

	Records
Insemination/Non Service Heat Events	370,074
- Technician Al	232.520
- DIY AI	117,871
- Non Service Heat Events	19,683

(iii) Milk Recording


- · 33% of cows and 22% of herds involved in milk recording
- 2.3% increase in milk solids (fat & protein) production
- · 99% of cows in milk recording from Holstein Friesian breed
- Some 13,000 animals linear inspected

Rick 2.6 Total Cows and Herds Recorded in Ireland (2000 vs. 2002)

	Milk Recor	ded Henh	National Dair	y Population			
Year	Cows	Herds	Cows	Herds	Cows	Herds	
2000	391,975	7,047	1,173,060	34,200	33.4%	20.6%	
2002	375,693	6,695	1,149,480	30,900	32.7%	21.7%	

Some 376,000 cows in 6,695 herds were involved in milk recording in 2002 (Table 2.6). Expressing these figures as a proportion of the dairy cows and herds in Ireland (Figure 2.7) indicates that some 33% of the cows and 22% of the herds in the National dairy population are involved in milk recording. Comparing these figures with 2000, suggests that proportion of cows in milk recording has dropped slightly over this last 2 years, while the proportion of herds has increased slightly (Figure 2.7).

Fig 3.7 Trends in Cows and Herds Recorded in Ireland (1993-2002)

Total solids production (fat + protein kg) increased by 2.3% in 2002, from 416.6 kg in 2001 to 426.3 kg in 2002 (Table 2.7). The increase in total solids production is consistent with recent trends in this area (Figure 2.8 and 2.9), which have indicated a steady increase in fat and protein production over the last 7 years.

Toble 27 Average Production for all Milk Recorded Costs (1993-2002).

	Records	Days in Milk	Milk kg	Fathg	Fat %	Pin kg	Pto %
1993	177,605	277	5.363	190.8	3.56	175.9	3.28
1994	248,638	272	5,263	187.3	3.56	172.5	3.28
1995	330,544	266	5,259	187.2	3.56	170.6	3.24
1996	355,105	262	5.215	186.6	3.59	169.5	3.26
1997	346,560	266	5,302	190.8	3.61	173.0	3.27
1998	369,919	267	5,293	193.3	3.67	173.8	3.29
1999	363,871	272	5.534	202.3	3.67	182.7	3.31
2000	350,263	277	5,884	216.2	3.67	195.5	3.33
2001	303,313	267	5,954	220.0	3.70	196.6	3.31
2002	282,156	293	6.049	224.7	3.71	201.6	3.33

Fig 7.8 Thends in Fat and Protein Kg (1993-2002)

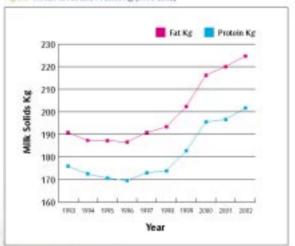
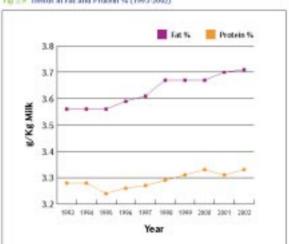



Fig 2.9 Trends in Fat and Protein % (1993-2002)

The Holstein Friesian breed (>50% Holstein or Friesian genes) was the most dominant breed of cow in milk recording, accounting for 99% of the cows milk recorded in 2002 (Table 2.8). The majority of these animals were between 50% and 87% Holstein, i.e., were first or second cross Holstein progeny. Pure Holstein progeny (>87% Holstein genes) had the highest milk protein production (+225.0 Kg), but also had slightly lower milk protein content (3.29%) and longer lactation length (318 days) than most other breeds. Of the other dairy breeds, the Jersey breed (and its crosses) would appear to have performed best, although this was mainly due to much higher BF% (5.65% and 5.44% for the pure-bred and cross-bred groups respectively).

Ashir 23 Average Yield by Breed for Animals with Known Parentage (2002)*

Breed	% Genes	Records	Milk Kg	Fat Kg	Ptn Kg	FatN	Ptn%	SCC	Lact Lengt
AY	>87%	74	5,826	212.4	190.2	3.64%	3.26%	205.7	313
AY	50-87%	101	5,506	204.3	183.8	3.71%	3.34%	159.1	298
FR	>87%	2,223	5,813	219.2	195.5	3.77%	3.36%	242.1	287
FR	50-87%	22,372	5,838	217.5	195.9	3.73%	3.36%	224.2	286
НО	>87%	29,894	6.832	253.1	225.0	3.71%	3.29%	169.4	318
HO	50-87%	188,522	5,997	222.6	200.0	3.71%	3.33%	190.7	291
TE	>87%	232	5,034	284.3	200.2	5.65%	3.98%	152.4	411
JE	50-87%	148	4,418	240.3	170.5	5.44%	3.86%	216.6	285
KE	>87%	4	3,683	146.9	119.6	3.99%	3.25%	415.3	308
KE	50-87%	14	4,963	201.6	171.5	4.06%	3.45%	172.7	298
мо	>87%	486	5,780	211.1	197.0	3.65%	3.41%	175.9	333
MO	50-87%	1,004	5.304	198.1	178.5	3.73%	3.36%	112.9	290
NO	>87%	2	3,556	123.7	122.7	3.48%	3.45%	40.0	291
NO.	50-87%	170	5,217	200.6	181.6	3.84%	3.48%	189.1	270
RB	>87%	0	0	0	0	0	0	0	0
RB	50-87%	195	4,949	187.5	173.7	3.79%	3.51%	120.4	272
SI	>87%	47	5,633	204.0	188.1	3.62%	3.34%	214.6	321
51	50-87%	355	5,310	193.9	178.4	3.65%	3.36%	197.7	287
Undefined		70,893	6.016	223.0	200.9	3.71%	3.34%	223.3	290

Looking at trends in lactation number suggests that some 66% of cows in milk recording in 2002 (195,626) were in lactations 1-4 (Table 2.9). Milk solids production (fat + kg) protein was highest for animals in their 4th lactation but declined thereafter. In contrast SCC levels increased almost linearly with age (Figure 2.10) and were highest for animals in their 6th lactation and above (297,000 cells and 381,000 cells for groups 6-10 and 11-15 respectively).

Roble 2.9 Average Yield by Parity (2002)

Lact No.	Records	Milk Kg	Fat Kg	Pin Kg	FatN	Ptn%	SCC	Lact Length
1	49,748	5,144	193.8	171.3	3.77%	3.33%	123.2	288.9
2	52,560	5,914	221,2	198.8	3.74%	3.36%	133.8	296.5
3	48,869	6.327	235.1	212.1	3.72%	3.35%	155.1	293.5
4	44,449	6,437	238.8	214.9	3.71%	3.34%	185.4	290.5
5	34,768	6,430	237.7	213.6	3.70%	3.32%	220.1	288.4
6-10	61,834	6,150	226.4	203.2	3.68%	3.30%	297.9	284.8
11-15	4,125	5,547	200.6	181.3	3,62%	3.27%	381.6	282.4

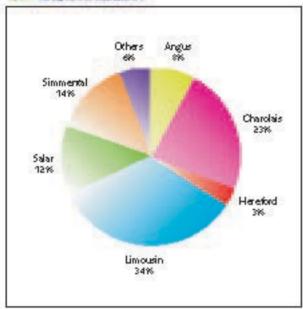
A total of 13,262 animals were linear inspected in 2002 (Table 2.10). These were inspected in both IHFA member (some 80% of records) and non-member herds (i.e., ICBF herds for the purpose of National progeny testing).

Fig 2.10 Trends in SCC by Lactation Number

Tobic 2:10 Participation in IHFA Linear Assessment Schemes (1997-2007)

Only Data from the Holstein Friesian Herdbook has been transferred to the ICBF Database. Therefore data may be incomplete for other breads.

(iv) Beef Recording


- Decrease in number of bullsthrough Tully
- Increase in level of linear scoring and weight recording for a number of breeds
- . Less than 1% of National beef population in performance recording

THE RESERVE OF THE PARTY OF	P	garden light of the	The state of the state of	d (1007) 2002)
7000MP 2:33	PANAS TIPLE	P. COLOMBIA STATE OF THE PARTY AND ADDRESS OF	THE RESIDENCE PROPERTY.	ALC: 4 A COLOR OF THE PARTY OF

Year	Anglus	Autrac	1 Bue	8 d Aquit	Charotais	Herebrd	Limousin	Salar	Smmental	Ohers	
1997	11	0	9	2	62	77	61	0	32	0	194
1998	20	0	1	12	45	18	83	0	37	0	216
1999	19	3	7	3	43	25	58	5	53	0	216
2000	25	5	4		35	79	*	7	56	3	248
2001	16	13	4	14	59	*	69	ท	31	*	203
2002	12	4	0	3	35	5	52	79	21	2	153
Total	103	25	25	42	249	92	40.9	42	230	13	

The number of bulls tested through Tully dropped from 203 in 2001 to 153 in 2002 (a decline of some 24%). This was due to; (i) a reduction in the number of bull intakes in 2002 (from 5 intakes/year to 3 intakes/year), and (ii) more stringent pre-selection of bulls for performance testing (Table 2.11). The most prevalent breed on test was the Limousin with 34% of the bulls on test in 2002 (Figure 2.11), followed by the Charolais (23%), Simmental (14%) and Salar (12%).

70g 2.75 Participation in Tully by Bread

Three herdbook associations offered a linear scoring and weight recording service in 2002; the Charolais breed, the Limousin breed and the Simmental breed (Table 2.12). Looking at animals born in 2001 (the majority of which will have been scored in 2002), in dicates that some 4,612 animals were scored by the Charolais herdbook, 4,519 animals were scored by the Limousin herdbook and 1,593 were scored by the Simmental herdbook In addition to a linear scoring service, weight recording services are also available to members of these herdbooks with 3,177, 1,580 and 684 animals weight recorded in the Charolais, Limousin and Simmental herdbooks in 2002 (the Charolais herdbook offered its own service in 2002, whilst the Limousin and Simmental herdbooks used the service offered by DAF). Looking at trends over the last few years, in dicates a general increase in the number of animals participating in these schemes within each of the organisations.

In addition to the Limousin and Simmental breeds, DAF offered a weight recording service to a number of other breeds in 2002; notably the Angus, Hereford, Belgian Blue Salars and Blonde d'Aquitaine. The number of animals weight recorded across these breeds was about 500.

	linear	Weight		Waght		Weight	
10:03	0	554	1711	377	0	389	
1994	279	586	2037	383	0	444	
10195	1758	607	2272	628	0	426	
1006	3683	797	2694	711	0	404	
1997	2397	1393	3025	1013	0	362	
10.08	3657	3683	3375	1429	306	296	
10:00	3846	3923	3702	7594	826	493	
2000	4139	3899	4715	1638	1383	749	
2001	4612	3177	4519	1664	1503	684	
20 02	2002	ะท	516	212	940	489	

There are currently two types of Al beef progeny test scheme for carcass traits; (1) the central progeny test scheme or (ii) the on-farm scheme (first introduced in 2000). Some 2,079 records have been collected as part of the centralised scheme (since 1990), whilst 1,469 records have been collected as part of the on-farm scheme (since 2000). The most prevalent breeds in each of these schemes were the Belgian Blue, the Charolais and the Simmental breeds respectively (Table 2.13).

NAMES IS Animal Events - Trends in Property Testing by Breed (2000)

ir eed		On- hm
Angus	288	150
Hereford	317	4
Charolais	524	283
Limousin	348	77
Simmerkal	263	455
Blonded Aquitainne	33	0
Belgan Blue	311	510
Tobi	2079	1460

Combining data from pedigree beef herds (some 11,200 records), Tully (153 records) and Al progeny testing (some 600 records), suggests that approximately 12,000 animals were involved in beef performance recording in 2002. Expressing this as a proportion of the National beef calf population (some 1.6 million calves/annum), suggests that about 0.75% of all beef calves born are involved in beef performance recording which is considerably lower than even that achieved within the dairy population (33%).

(i) Organisational Structure

- 12 milk recording organizations
- 8 Al organizations
- 14.6% decline in first inseminations since 2000

Retrie 3:11 Heards and Comes Recorded	bytellic Rec	conding Socie	ette s (2000)	0					
Mills Recording Society	Total Her di	Total Core	hd Herds	Come	Mards	A6 Cours	AS Herds	Come	Hero
Amiron Go-sp	105	6,004	39	1,000		4,394		496	12.5
Palacine Ci-sp	25	(FD	10	CH		10			444
CDALI	24	9,402	100	T,MT	24	1,000	2	224	The
افة افحدة	- 04	1,911	196	4,347	*	-01	2	M	42.2
Robyjski Co-op	1,881	55,000	173	20,027	9864	M,331	100	1,000	10.2
Beregal Co-up	24	1,901	#	1,401	1				824
Sery Apilliniana	1,988	6,01	- CH	30,504		24,695	100	1,000	143
Promothic Co-up	.tt	1,546	41	-	25	-	10	M	42.7
Rock Cash Ca-sp	16	2,986	4	NE	26	1,001	1	•	224
Projectiva Gazalla	2,384	UH,FM	1973	112,600	25	8,000	201	14,005	574
Sauth Western Dervins Es-op	1,064	EL,KT	MH	11,271	648	10,364		3,846	MA
Примиу Со-ар	-	7,507	401	3,004	29	1,178	2	Ħ	EL:
All Sodolbus Triad 2002	6,000	200,000	1,000	300,600	3,814	94,300	-	30,600	1004

organizations offered a milk recording service to farmers during 2002 (Table 3.1). The largest milk recording organization (based on number of cows recorded) Progressive. Was Genetics 35.1% of the total recorded @WS

(some 131,700 tows). This was followed by Dairygold Co-op (24.9%), Kerry Agribusiness (16.9%) and South Western Services (13.9%). Combined these organizations actounted for 341,210 of the total cows recorded in 2002 (90.8% of the total).

7866-3.2 Herds and Over Re-pid-edity Milk Recording Societies (1999/2002)

Milk Recording Society						3000		
Assistant Brita	TIE	-	13-	THE	6,798	6367	MAN	1391
Policies D-sp	M	14	*	11	1,688	-	749	90
CDAM	167	741	100	1500	thus.	rd, bits	10,000	pl/ess
Cressred Grid	365	100	-	100	MIN	6.ETM	KATT	E#H
Belggald Co-sp	1,686	1,000	1,000	1,041	16,346	14,130	31,911	16,011
Descript form	26	M	27	H	1.70	179	1874	Lim
Day hjálimben	1,336	1,549	1,800	1,00	40,04	MJR4	MAN.	4,41
Manuska Co-up	44	34	38-	22	2,040	1,011	1,666	1,041
Hartle Crait Co-ep	44	- 44	-	34	LIVI	130	2.047	127
Inpain lasts	2,484	2,000	2,380	2,248	140,300	40,00	92,EM	481,76
South Western Freedom Gran	M.	1.44	-	1,070	elm-	E144	44,234	2.03
Hypermy Co-op	90	466	466	90	14,000	14,10	7/007	7/907
_	Tabel	1,647	4,100	4,660	242,946	Spingram	204,000	Arrest

Looking at trends over time (Table 3.2) indicates a substantial increase in the number of cows in milk recording compared to 2001 (milk recording had dropped by 14% in 2001 due to the impact of F&M). However, the level of recording achieved in 2002 was not as high as that achieved in the years just prior to F&M (392,960 in 2000 and 391,975 in 2001). Looking at trends within each of the 4 main milk-recording organizations suggests that the level of milk recording has dropped slightly in all areas, with the exception of South Western Services, who reported a slight increase (+1%) compared to 2000 and 2001.

Trends in Milk Recording Method (1997-2001)

	A4 Herds	As Herds	At Herds	Total Res
1997	4,792	1939	537	6,667
1008	4,279	2,128	575	6,982
1000	4,769	2,268	609	7,046
2000	3,996	2364	687	7,047
2001	3,568	5 0 65	513	6,140
2002	3,583	2514	628	6,605

There are presently 3 types of milk recording scheme offered to farmers (Table 3.3); the A4 scheme (recording every 4 weeks), the A6 scheme (recording every 6 weeks) and the A8 scheme (recording every 8 weeks). The A4 scheme was the most popular scheme in 2002, with 53.1% of farmers (3,553 in total) opting for this scheme. However, recent trends in milk recording method, suggest a gradual movement away from this type of scheme towards schemes with a longer recording interval.

Table 2.4 Inceningations by Breed and by Oppositation (2002)

All Organisation		Harekrd		Charotals					
Delrygald	46,794	1,096	19,300	4,805	1,601	1,125	6,000	1,047	184,791
Derma Al	40,417	400	7,011	7,900	ZAME	10,366	3,796	3,511	79,369
Kery Ad Marine	41,819	4,796	7,764	12,471	1,975	15,007	12,634	4,722	194,000
Proposito Genella	69.19T	LEE	13.481	20,526	2.927	22,719	22.279	Let	166,125
Sign Al	0,418	610	11,864	M,TL	4,001	17,673	T,8e4	2,749	70,476
South Winters Ferder Co-op	17,200	2,244	E/FIA	1,200	206	2,248	4,036	2,176	64,336
Eurogeon/All Strakes	10,000	PL	2,007	1,728	E2	2,418	3,664	7,256	33,531
Form Genetics	11364	2.691	ELMO	12.40	2998	13,309	5.734	3.354	62.491
Titals	394,980	17,300	FT,370	46,964	17,446	67,300	79,117	MART	713,111

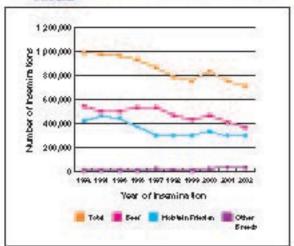
Totale 3.5 Al Tree & by Organization (20100-2009)

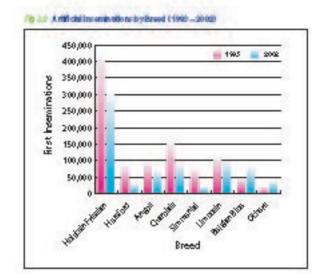
Al Organisation			
Dairygold Co-op	170 853	154,574	138 75 1
Doyes Al	93,790	83,376	78,359
Kerry Agri Business	120913	114,570	104 602
Progressive Genetics	187,165	167,187	168 (121
Sigo Al	113 985	98,371	78 A79
South Western Services Co-op	65,084	58,516	54,335
Burogene/All services	16,708	26,675	28,131
Bova Al	58,292	52,822	62,401
Tobi	835,100	756,091	713,179

A total of 8 organizations were licensed by the Department of Agriculture to provide a National Al service in 2002 (Table 3.4). The largest of these was Progressive Genetics (23.6% of total first inseminations), followed by Dairygold (19.5%), Kerry Agribusiness (14.7%), Sligo Al (11.0%) and Dovea Al (11.0%). Combined, the ICBF member organizations accounted for 87.3% of the total inseminations, whilst the 2 private Al organizations (Bova Genetics and Eurgene/Al Services) accounted for some 12.7% of the total inseminations.

Looking at insemination trends since 2000 (Table 3.5) indicates a major decline in the number of first inseminations, from 835,190 in 2000 to 713,170 in 2002 (a drop of some 14.6%). The decline has been evident for almost organizations, with the exception Bova AI and Eurogene/AI services, which have both reported an increase in number of first inseminations over the same period.

(ii) Artificial Insemination Usage

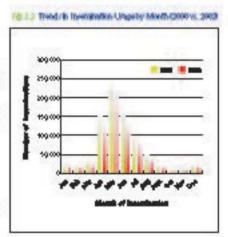

- 30% drop in Al usage over last 10 years
- Holstein Friesian most dominant breed
- Shift towards certain beef breeds


Table 36 Artificial Insensinations by Breed (1993)2,002)

H Priving	- DLMF	469,961	40,71	375366	808/126	250,009	300,000	106,000	301,220	994199
Hunted	22,797	75,834	77,696	PLAN	100,000	III,114	34,404	25,261	24,824	27,000
Anighei	10.002	83,694	100,000	110,060	149.764	134,350	TRANZ	67,540	FLIDE	67,500
Chemokali	454,794	136,343	164,701	937,300	110,594	97,005	22,646	994,763	54,244	85,244
Francis	72,445	FE/64	MILITAN .	F2,569	42,64	39,354	na	ZEARE	17,000	17,446
Limpysin	977,207	p.224	91,097	#3,415	64,536	10,577	140,001	116,625	100,916	97,700
Polylon Plan	29,664	44,867	49,006	F4,F85	87,501	37,7%	94,666	100,000	167,675	79,937
Others	19.042	91,90	19.892	20,299	25,536	29.800	15.611	29,900	14.244	34.077
Telsi Al	504,501	904,600	967,4794	90,771	M4/M	794,418	790/64	636,199	795,691	TIL

Insemination trends over the past 10-years (Table 3.6 and Figure 3.1), indicate a steady decline in the number of first inseminations, from a high of 994,921 in 1993 to a low of 713,179 in 2002 (a drop of some 28,000 inseminations/year). The drop was most evident for a number of beef breeds (Table 3.6 and Figure 3.2), notably the Simmental (-76.0%), Hereford (-66.7%) and Charolais breeds (-44.3%), in contrast the number of inseminations for the Belgian Blue breed has increase considerably over the past 10 years from a low of 39,864 in 1993 to 78,137 in 2002 (+96.0%). However, more recent trends (2000-2002) would suggest a distinct movement away from this breed as a preferred choice of Al sire (Table 3.6)

9.3.1 Number of Inventorations for Holden Priedon, Beef and Other Breeds (1905, 2002)


REVol. 7 A/Official Incommittee Urage for Dailty Breed: Cooks A-20020

H Friesian	301,228	304,703
MRI	1,450	1,212
Ayrshire	328	278
Jersey	1,961	1,897
Brown Swiss	203	924
Montbelliarde	9,893	71,879
Normande	368	203
Kerry	710	137
Scandinavian Red	413	317
Rotbunt	5,078	5,023
Total	32 1,032	325,973

Whilst the overall number of Holstein Friesian inseminations has dedined over the past 10 years (by some 28.3%), more recent trends (1997-2002) would suggest that the number of Holstein Friesian inseminations has stayed relatively stable over the past 6 years at around 300,000 first inseminations/year. The figure for Holstein Friesian represents some 94% of total dairy inseminations (Table 3.7) and underlines the critical role that this breed continues to play within the Irish dairy industry. In contrast, Al usage in other dairy breeds continues to remain at a relatively low level (Table 3.7)

The highly seasonal aspect to milk and beef production systems in Ireland was again evident in 2002, with 66.8% of all first inseminations taking place during the months April, Way and June (Table 3.8 and Figure 3.3). The seasonality of

Figure 3.3). The seasonality of usage was particularly evident for the dairy sector, with 81.6% of all Holstein Friesian inseminations occurring within this three-month period. Whilst, Al usage is highly seasonal in Ireland, trends in seasonality (Figure 3.3) would also suggest an increase in the proportion of inseminations happening in the summer months (July, August and September).

thus the Supposedity of all thousandones.

Tietata	HAR	TLTS	TLEN.	ULMI	MI-IM	THANK	H20	34,534	MAN	-	10,000	TLANS	THAT
CHIM	CIT .	406	632	4,271	15,000	4,001	3,346	1,486	£14	364	360	T29	34,092
Post .	11.5%	99.911	13,994	36.271	49.30E	44.011	65.186	10,171	14.092	7.224	7.170	4,874	374.675
HF	8.296	1,391	1,005	#1.Sez	122,102	37,494	93,207	4,007	1,360	1,000	8.301	0.200	364.90

In addition to inseminations through licensed AI organizations, some 3,371 dairy and beef farmers are presently licensed by the Department of Agriculture to carry out "Do-it-Yourself' Artificial Insemination (DIY AI) on their farm (licenses are valid for a period of 3-years at a time). The number of new license holders increased considerably in 2002 (up from 269 in 2001 to 450 in 2002), probably as a result of F&M in 2001 (Table 3.9).

The average herd size of licensed AI herdowners is 87 animals, suggesting that some 290,000 animals were covered by DIYAI in 2002. Assuming that all cows in DIYAI herds are artificially bred, this figure suggests that the total number of first inseminations last year was some 1,060,000. Expressing this figure as a proportion of the total calves registered (2,180,126), suggests that the AI penetration rate in 2002 was approximately 46%.

The level of bovine semen imported into Ireland last year (from all other countries) dedined slightly from 245,096 in 2001 to 227,887 in 2002 (Table 3.10). The level of semen imported was highest for the Holstein Friesian breed (155,327), followed by the Belgian Blue (24,027) and Limousin breeds (12,475) respectively.

Attist 39 DIY Al Licemes (1992-2001).

	New licenses	Renewed licenses	Licenses/year
1992	267	262	529
1993	351	261	612
1994	455	376	827
1995	451	380	B30
1996	378	299	677
1997	430	394	824
1998	317	546	863
1999	237	422	659
2000	315	813	1128
2001	269	867	1136
2002	450	657	1107

Aghler 3.181 Semen Improbations by Breed (2000-2002)

Breed of Al Sire	2000	2001	2002
H Friesian	157,499	171,232	155,327
Montbeliarde	2.045	7,975	5,510
MRI	5.766	1,500	4,848
Jersey	0	0	3,866
Hereford	1.380	1,300	2,610
Angus	3.059	5,434	3,860
Charolais	6,303	11,816	5,773
Simmental	1,671	515	1,015
Limousin	15,344	26,500	12,475
Belgian Blue	6.507	18,824	24,027
Others	0	0	8,576
Total	199,574	245,096	227,887

Notice 311 Number of Dairy and Dual Purpose Bulls on Test by Organisation (1999-2003)

	1999	2000	2001	2002
ABS Progen	0	0	0	2
Bova Genetics	0	0	0	1
Dovea Al	10	4	9	-11
Progressive Genetics	14	12	16	12
Eurogene/Al Services	10	2	6	6
International Livestock Genetics	8	0	1	2
Munster Al	30	20	-11	19
Total	72	38	43	53

Nation 372 Dulry and Dual Purpose Test Bulls by Breed (2001 & 2002)

	2001	2002
Ayrshire	0	1
Brown Swiss	0	1
Holstein	23	34
Friesian	15	9
Jersey	0	1
Montbelliarde	3	4
Rotbunt	2	3
Total	43	53

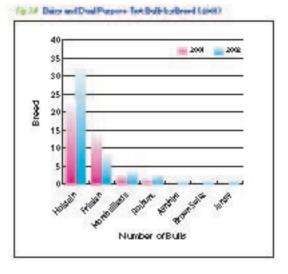
ToW 313 Number of Beef Bulls Starting Test by Organisation (1999-2002)

	1999	2000	2001	2000
Bova Al	0	-0	0	7
Dovea Al	9	10	9	13
Eurogene/Al Services	6	13	1	4
Goulding Genetics	0	3	1	2
Irish Hereford Society	0	2	-1	2
Irish Pietmontaise Society	0	0	0	-4
Irish Saler Society	0	0	0	3
Irish Simmental Society	0	5	2	0
Irish Angus Society	0	0	1	0
Munster Al	14	16	10	- 1
Progressive Genetics	21	18	16	14
Total	50	67	41	50

(iii) National Progeny Test Program

- Slight increase in number of dairy and beef bulls on test
- · Holstein most dominant dairy breed
- Belgian Blue most dominant beef breed

At present 7 Al organizations are actively involved in ICBF's progeny test program for dairy and/or dual purpose breeds (Table 3.11). The number of bulls going on test in 2002 was 53, the majority of which (42 in total) are being tested by ICBF member.


organizations (Dovea AI, Progressive Genetics and Munster AI) and the remainder by "private" organizations. Munster AI (an amalgam of 3 AI organisations; Dairygold, Kerry and South Western Services) were the largest organization testing bulls in 2002 (19 bulls on test), followed by Progressive Genetics (12 bulls on test) and Dovea AI (11 bulls on test). The number of bulls on test has increased slightly over the past 2 years (+15 bulls) but has declined relative the number of bulls on test in 1999 (-19 bulls).

Looking at the breakdown of breeds going on test in 2001 and 2002 (Table 3.12 and Figure 3.4) indicates that the Holstein breed was the most prevalent dairy/dual purpose breed going on test last year with 34 of the total 53 bulls going on test being from this breed. This was

followed by the Friesian breed (9 bulls on test), Montbelliarde (4 bulls on test) and Rotbunte breeds (3 bulls on test) respectively.

At present, there are eleven organizations actively involved in ICBF's progeny test program for beef breeds (Table 3.13). The number of bulls going on test in 2002 was 50, 37 of which are being tested by ICBF member organizations and the reminder by private organizations (Bova, Eurogene/Al services and Goulding Genetics). Progressive Genetics and Dovea Al were the 2 largest organizations testing beef bulls in 2002 (14 and 13 bulls respectively), whilst the most prevalent breeds going on test were the Belgian Blue (15 bulls on test) and the Charolais (11 bulls on test) respectively (Table 3.14).

Argus	2	1
Aubrac	1	0
Blonde	1	0
B. Blue	12	15
Charolais	12	11
Hereitord	31	5
Limousin	*	6
Piemontaise	0	4
Par thenais	0	1
Saler	0	4
Shor thorn	2	.5
Simmental	2	4
Total	41	50

(iv) Genetic Improvement within Holstein Friesian Breed

- Genetic q ain of some €2.9/cow/year in National milk recorded cow population
- Continued improvement in genetic merit for milk production traits
- Decline in genetic merit for calving interval and survival

The Economic Breeding Index (EBI) was first introduced in 2000. The index is published in Euros and ranks animals on overall profit. It contains information on five traits related to profitable milk production; milk, fat and protein yield and 2 traits related to fertility performance, calving interval and survival.

Tokal & Genetic Trendin EB for HF Course

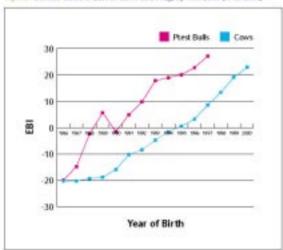

		PERM
1986	-20.24	-19.9
1987	-20.27	-148
1088	-19.35	-2.4
1080	-18.83	5.7
1000	-18.91	-15
1001	-10.28	49
1002	-8.54	9.8
1003	-479	17.8
1994	4.60	19.0
1005	0.58	20.1
1996	3.25	
1007	8.57	27.1
1008	13.37	
1000	19.05	
2000	22.89	

Table 2.56 Genetic French in HF Court for EB , MR: Production and Fertility Trails

1986	-20.2	-180	-7.7	-6.2	-0.02	0.00	-3.9	0.1
1987	-20.3	-183	-7.5	-6.2	-0.01	0.00	-3.7	0.1
1988	-19.3	-182	-7.1	-6.0	0.00	0.00	-3.6	0.1
1989	-18.8	-172	-6.3	-5.7	0.01	0.00	-3.4	0.1
1990	-78.9	-B8	49	47	0.01	0.00	-3.1	0.0
100 1	-10.3	-106	-3.3	-3.4	0.02	0.00	29	0.0
1992	-8.5	-97	-29	-3.0	0.02	0.00	-29	0.0
1993	48	-71	-53	-2.1	0.01	0.01	-28	0.0
1994	-16	-30	-0.9	-0.8	0.01	0.00	-23	-0.2
1005	0.6	3	0.1	0.1	0.00	0.00	-19	-0.3
1096	3.3	31	10	0.9	0.00	0.00	-16	-0.3
1997	8.6	63	20	55	-0.01	0.00	-13	-0.3
1998	13.4	93	3.1	3.3	-0.01	0.01	-1.1	-0.3
1000	19.0	114	3.9	42	-0.01	0.01	-4.1	-0.2
2000	22.9	135	46	5.0	-0.01	0.01	-10	-0.1

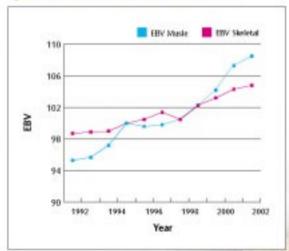
Looking at trends in EBI value for cows and progeny test sires (Table 3.15 and Figure 3.6), indicates a steady increase in the average EBI of milk recorded cows during the past 15 years, from a value of €-20.2 for cows born in 1986 up to a value of €22.3 for cows born in 2000. This represents an increase in EBI value of some €2.9/year for the 15-year period. Similar trends are also evident for test bulls, although the average EBI of this group, is somewhat higher, reflecting the fact that these animals are a highly selected group (Figure 3.6).

Fig. 15. Genetic Trend in EBI for Cows and Progeny Test Bulls (1986-2000).

Looking at trends in the component traits within the index, indicates a steady improvement in milk production traits, from a low of –13.9 kg in 1986 to a high of +10.6 kg in 2000 for milk solids production (+1.63 kg/year). Trends for Calving Interval and Survival are somewhat different, and indicate a definite decline in fertility performance over the same period, from a high of –3.9 days for cows born in 1986 to a low of –1.0 days for cows born in 2002 (a drop of some 0.2 days/year). Similar trends are also evident for Survival%, suggesting an increase in the proportion of cows being involuntarily culled from the National milk recorded herd.

(v) Genetic Improvement in Beef Breeds

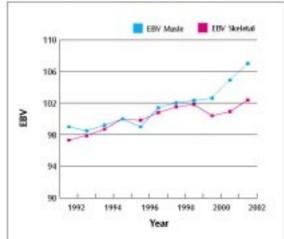
- Sustained improvement in muscle and skeletal EBV within the Limousin, Charolais and Simmental breeds
- Different ranking across beef breeds for conformation, fat cover and kill-out%


At present, three herdbooks offer an on-farm linear scoring service to its members, the Charolais, Limousin and Simmental herdbooks (Section 2). Looking at genetic trends in muscle and skeletal EBV for each of these breeds indicates substantial genetic improvement within each of the breeds for these traits (Table 3.17, 3.18 and 3.19). For example, within the Charolais breed, EBV for muscle has increased from 95.3, for animals born in 1992, to 108.5 for animals born in 2002, an increase of some 1.2 units/year over the last 11 years. Similar results are evident for skeletal EBV, although the rate of improvement has not been as marked.

Trends within the Limousin and Simmental breed (Figures 3.7 and 3.8) indicate similar levels of genetic improvement to that shown within the Charolais breed for both muscle (1.0 units/year since 1995) and skeletal EBV (0.4 units/year since 1995).

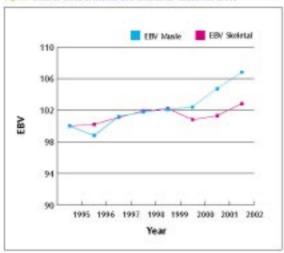
3058 357 Genetic Trends for Muscle and Skeletal in Charolais Breed (1992-2002)

Birth Year	EBV Muscle	EBV Skeleta	
1992	95.3	98.7	
1993	95.7	98.9	
1994	97.2	99.0	
1995	100.0	100.0	
1996	99.6	100.5	
1997	99.8	101.4	
1998	100.5	101.6	
1999	102.2	102.3	
2000	104.2	103.2	
2001	107.3	104.3	
2002	108.5	104.8	


Fig. 3.6 Genetic Trend in Muscle and Skeletal for Charolais Breed

Troir 1/8 Genetic Trenth for Mancle and Skeletal in Limousin Breed (1992-2002)

Birth Year	EBV Muscle	EBV Skelet	
1992	99.0		
1993	98.5	97.9	
1994	99.2	98.7	
1995	100.0	100.0	
1996	99.0	99.8	
1997	101.4	100.8	
1998	102.0	101.5	
1999	102.3	101.8	
2000	102.6	100.4	
2001	104.9	100.9	
2002	107.0	102.4	

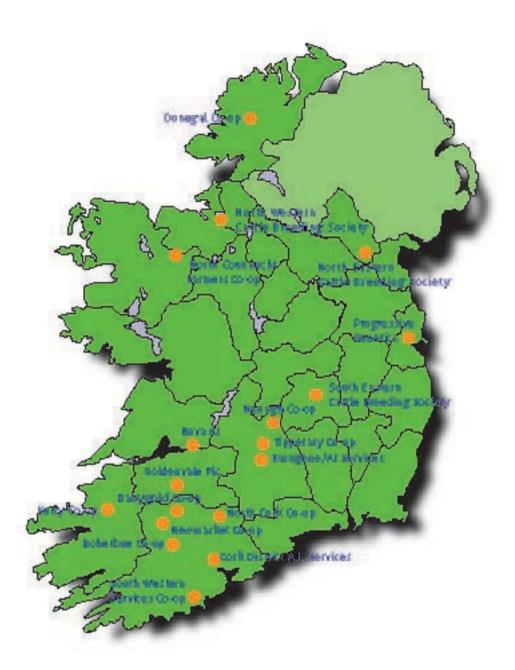

19/3/7 Genetic Trend in Muscle and Skeletal for Limousin Breed

Tober 319 Genetic Trends for Muscle and Skeletal in Simmental Breed (1995-2000)

Birth Year	EBV Mande	EBV Skeleta	
1995	100.0	100.0	
1996	98.8	100.2	
1997	101.2	101.1	
1998	101.8	101.9	
1999	102.1	102.2	
2000	102.4	100.8	
2001	104.7	101.3	
2002	106.8	102.8	

Fig. 3.8 Genetic Trend in Muscle and Skeletal for Simmental Breed

In contrast to genetic evaluations for linear traits which are within breed, genetic evaluations for Al progeny test data are across breed. This allows animals and breeds be directly compared in the one genetic evaluation system.


Looking at expected breed differences for each of the traits (Table 3.20) indicates that the Charolais breed is the most superior breed for carcass weight (average carcass weight of crossbred progeny was 391 kg), followed by the Belgian Blue breed (381 kg), and then the Blonde d'Aquitaine (377 kg). Similarly, trends for conformation grade indicate that, based on crossbred progeny performance, the Belgian Blue breed was the leanest breed (3.08 or R grade carcasses) followed by the Charolais breed (3.06), Limousin breed (2.95) and Blonde d'Aquitaine breeds respectively (2.79).

A different ranking order is apparent for fat class, with the Hereford breed resulting in animals in the highest fat class (3.95), followed by the Angus (3.82) and Holstein Friesian breeds respectively (3.39). Trends for kill-out% are similar to those for conformation, with the Blonde d'Aquitaine (57.7%), the Simmental breed (57.0%) and the Belgian Blue breeds (56.7), being the three breeds that are expected to result in crossbred progeny with the highest kill-out%.

Intel® 1.70 Across Breed Comparisons for Beef Traits

Breed	Carcass wt.	Conformation		Kill-out %
Angus	355	2.69	3.82	55.3
Holstein Friesian	350	2.02	3.39	53.9
Hereford	367	2.66	3.95	55.1
Charolais	391	3.06	3.30	55.4
Simmental	376	2.74	3.35	57.0
Limousin	368	2.95	3.26	56.7
Bl. d'Aquitaine	377	2.79	2.97	57.7
Belgian Blue	381	3.08	2.99	56.7

Irish Cattle Breeding Federation Society Limited

Shinagh House, Bandon, Co. Cork, Ireland Tel: + 353 (0) 23 20222 Fax: + 353 (0) 23 20229 Email: enquiry@icbf.com Website: http://www.icbf.com

© Instricatile Breeding Federation Society Limited 2002

