

Developments in G€N€ IR€LAND Dairy Breeding Program.

8th December 2010

© Irish Cattle Breeding Federation Soc. Ltd 2009

1

Agenda

- 11.15 Current status.
- 11.30 Genomic Programs for Dairy Cattle in Ireland Noirin McHugh.
- 12.00 Cost Benefit Analysis & Implications Andrew Cromie.
- 12.30 Discussion.
- · 1.30 Light Lunch.
- 2.00 Further Discussion and plans for moving forward.
- · 3.00 Close of meeting.

)

G€N€ IR€LAND Current Status.

8th December 2010

Dairy Breeding Programs - The challenges.

- · EBI is delivering at farm level.
- · Genomics can double rates of EBI gain (e.g., Meuwissen. HcHugh...)
- But need to; (i) ensure high levels of accuracy with genomics, (ii) manage; animal health & disease, (iii) maintain genetic diversity.

<u>Revised</u> G€N€ IR€LAND Program - Spring 2010

- · Program objectives.
 - Maximise long-term genetic gain (€).
 - Provide an ongoing resource for R&D into genomic evaluations.
 - To minimise risk for the breeding program.
- Consultation process with industry stakeholders (May/June).
- · Opportunity for comments & feedback.

IC

5

i. Genotypes, bulls, cows - project.

- Scientific basis work undertaken by Noirin McHugh, Theo Meuwissen & Anna Sonnesson.
- Simulation based on data structure from Ireland.
 - Varied level of genotyping, age at 1st AI, level of progeny testing & cows available for the breeding program.
- · Papers submitted to Journal Dairy Science.
- · Results presented and discussed today.

Key Elements of Future Dairy & Beef Programs. ICBF Cattle Breeding Database -12 months 1 million cows -12 months **Identification.** Elite females identified based on genomic 3k females index & diversity. Mating advice provided. **Selection.** Calves born and selected based on genomic index & 1 month 1000 males 1-12 months Rearing. Calves reared in "High Health" units. 300 males Lease/ownership . Elite AI bulls identified. Lease/ownership 12 months 125 males arrangements established. Surplus bulls sold. 12-24 months Collection. Elite AI bulls moved to collection centres. 125 males 12-24 months **Processing.** Semen processed by AI centres. 100 males 12-24 months **Distribution.** Semen distributed by AI Service Providers 100 males 12-24 months 30 males Breeding Replacements. Semen used to breed National Herd

ii. Cost:benefits

- · Work being undertaken by Peter Amer.
- · Trade off between cost & benefit.
- Cost elements genotypes (males & females), progeny testing, data recording, cost of disease etc.
- Benefits long-term genetic gain (EBI, inbreeding level & reliability).
- Results presented and discussed today.

iii. Inbreeding & genetic gain - Project.

- Sub-group established ICBF, Teagasc bull breeders & AI companies.
- High EBI & diverse cows identified (2,200).
- Panel of high EBI & diverse sires of sons identified (~50 bulls).
- Matings allocated and communicated with farmers (Teagasc research).
- 80-100 high EBI young bulls will be born next Spring. Valuable resource for industry.

iv. R&D data for genomics.

- Working with Teagasc to establish a "next generation" herd at Moorepark.
- Objective: Continually test the EBI.
- 200 cow herd, 40 replacements per year. generating surplus males & females.
- High EBI & diverse heifer calves purchased from commercial herds (e.g., output from breeding programs research).
- Opportunity to link with AI companies in the provision of breeding bulls.
- Work ongoing with Teagasc.

10

IRISH CATTLE BREEDING FEDERATION

Implications of Alternative **Breeding Program Structures** for Dairy Cattle in Ireland.

Peter Amer (Abacus Bio) & Andrew Cromie (ICBF).

8th December 2010

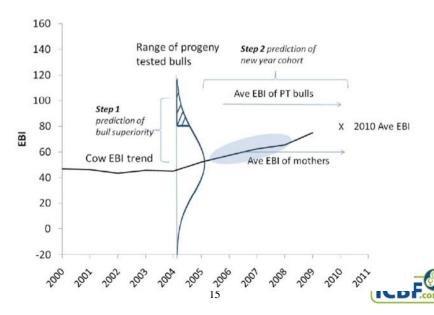
Objectives of Work.

- · To develop the business case for industry investment in a new state of the art approach to genetic improvement.
 - Predict increases in profitability for different breeding strategies.
 - Take account of all relevant costs.

12

Cost & Benefits Exercise.

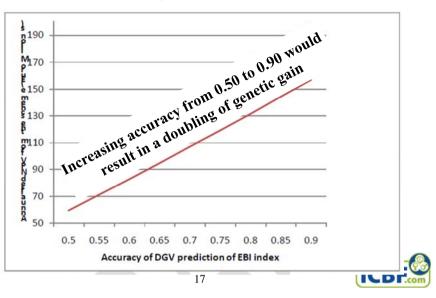
- Appropriate model developed.
 - Takes account of different timing of benefits, e.g., short versus long-term.
 - More appropriate for cost-benefit exercises. For example, two programs, with same long-term genetic gain, but different Net Present Values. Also different timing of costs (e.g., short-term benefits from genomics).


13

1. Predicting Increases in Profitability.

- · A three stage approach.
 - 1. Predict genetic merit of future bull teams.
 - 2. Model genetic trends in calves (and cows), compared to baseline.
 - 3. Express future genetic merit of these females in profit terms (NPV).

Deterministic Model - Steps 1 & 2.


Step 1. Prediction of Superiority.

14

- Function of:
 - Accuracy of selection (or increase in reliability width of normal distribution).
 - Parent average = 30% reliability
 - Genomics = 40%, 50%, 60%, 70%.....?
 - Depends on traits, level of genotyping, role of females...
 - Progeny test = 80% reliability.
 - Number of animals tested.
 - · More animals = greater selection intensity.
 - Potential role of females.
 - Selection differential.
 - Elite & nucleus herds.

Example: The Benefits of accuracy of selection.

Example: The Benefits of Females.

	Low h2 (=.03)				
Situation	$N_{\it Bulls}$	heffective.Bulls	N _{Cows}	heffective.Cows	r _{GS}
Base	1100	.50	0	0	.58
2000 cows genotyped	1100	.50	2000	.06	.62
5000 cows genotyped	1100	.50	5000	.06	.65
20000 cows genotyped	1100	.50	20000	.06	.75

 Females have potential to increase accuracy by ~30%

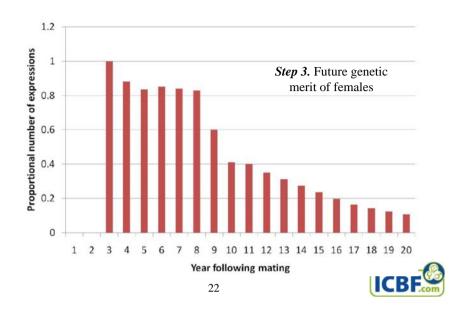
18

Example: The Benefits of Nucleus Herds.

- Nucleus herds have potential to increase selection intensity by 14%
- At what cost?

Elite calves genotyped	Nucleus calves genotyped	Intensity A ¹	Intensity B ²	Intensity C ³
5000	200	3.31	3.42	3.53 (Scheme 10)
2000	200	3.22	3.36	3.48
1000	200	3.11 (Scheme 9)	3.28	3.42
5000	0	3.26 (Scheme 8)		-
2000	0	3.15	-\	-
1000	0	3.01 (Scheme 7)		5

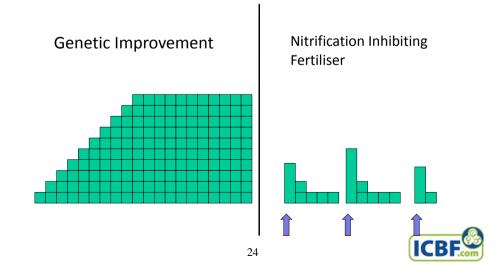
Step 2. Genetic Trends


- Each calf crop has merit ½ way between merit of cows & selected bulls.
- Baseline of no genetic gain for next 20 years (EBI of sires = €136).

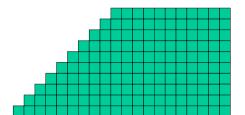
Step 3. Annualised Benefits.

- Superiority is translated into projections of genetic merit and then aggregated to give overall benefits.
 - Long term benefits.
 - Permanent & cumulative
 - Appropriate discounting
 - Net present values compared to baseline figures.
 - Annualised over the period of genetic gain (10 years).

Step 3. Long-term benefits.

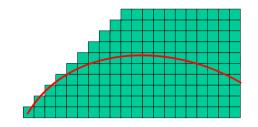


Permanent


Genetic Improvement

Nitrification Inhibiting
Fertiliser

Permanent and Cumulative


Total benefits

10 years genetic improvement over 20 years

Multiplier = 155

Total benefits + discount

10 years genetic improvement over 20 years

Multiplier = 155

Discount at 7% then Multiplier = 75

25

26

What is an EBI Gain of €10 worth to the industry (i)?

- How many times are the genes expressed?
 - 4 lactations, 2 grand-daughter lactations,
 1 great grand daughter.....(~8 in total)
 - Discount penalty of 7% due to future expressions.
 - One cow = 5 lactation expressions.

What is an EBI Gain of €10 worth to the industry (ii)?

- What is the value per cow & per year?
 - 5 lactation expressions = €50 per heifer (in EBI terms).
 - Multiply by 2 (profit per cow) = €100
 - 210k replacement heifers per year =
 €21 million per annum.

What is an FBI Gain of €10 worth to the industry (iii)?

- · What is the value over 10 years?
 - Discount penalty of 7% (NPV terms).
 - Year 1 = €21m
 - Year 2 = €21m * 2 * 0.93) = €39m
 - Year 3 = €21m * 3 * 0.86) = €55m
 - Year 10 = €781 million.
 - Annualised return of €78 million.
 - Permanent, cumulative & cost effective.

29

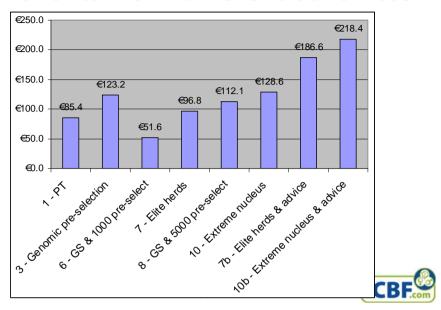
2. Taking Account of Costs.

- Two main costs associated with breeding program:
 - Cost of genotyping (inc sample)
 - · 3k = €50, 50k=€110.
 - Cost of Al bulls.
 - · Progeny test=€15k, genomic=€10k
- Additional considerations, e.g., biosecurity.
 - Additional bulls & lay-off facilities.

30

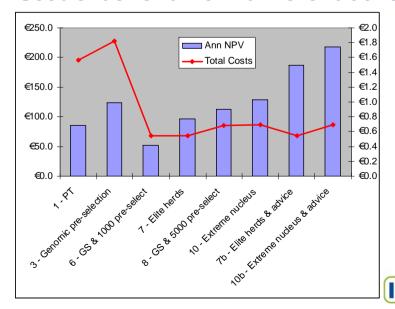
Scenarios to Compare.

- · 14 different schemes examined
 - Progeny test & genomic.
 - Pre-selection.
 - Level of genotyping.
 - Elite herds
 - Nucleus herds.
 - Directed advice.
- · 8 selected for discussion


Opt	Description
1	30 bulls selected from 100 progeny tested
	30 bulls selected from 100 progeny tested
3	with genomic pre-selection .
6	30 bulls selected from 1000 genomic tested
	30 bulls selected from 1000 genomic tested
7	from <u>elite herds.</u>
	30 bulls selected from 5000 genomic tested
8	from elite herds
	30 bulls selected from 5000 tested in elite
	herds and 200 tested in extreme nucleus
10	<u>herds</u>
	30 bulls selected from 1000 genomic tested
	from elite herds with directed breeding
7b	<u>advice</u>
	30 bulls selected from 5000 tested in elite
	herds and 200 tested in extreme nucleuus
10b	herds with directed breeding advice

Benefits from different schemes.

		Annual NPV
Opt	Description	(€mill)
1	30 bulls selected from 100 progeny tested	€85.4
	30 bulls selected from 100 progeny tested with	
3	genomic pre-selection.	€123.2
6	30 bulls selected from 1000 genomic tested	€51.6
	30 bulls selected from 1000 genomic tested from	
7	elite herds.	€96.8
	30 bulls selected from 5000 genomic tested from	
8	elite herds	€112.1
40	30 bulls selected from 5000 tested in elite herds	C100.0
10	and <u>200 tested in extreme nucleus herds</u>	€128.6
71.	30 bulls selected from 1000 genomic tested from	G100.0
7b	elite herds with directed breeding advice	€186.6
	30 bulls selected from 5000 tested in elite herds	
4 O L	and 200 tested in extreme nucleuus herds with	M40.4
10b	<u>directed breeding advice</u> 32	€218.4


Benefits from different schemes.

Cost & benefit from different schemes

		Annual	Total
Opt	Description	NPV (€mill)	Costs (€mill)
1	30 bulls selected from 100 progeny tested	€85.4	€ 1.560
	30 bulls selected from 100 progeny tested with		
3	genomic pre-selection.	€123.2	€1.818
6	30 bulls selected from 1000 genomic tested	€51.6	€0.541
	30 bulls selected from 1000 genomic tested from		
7	elite herds.	€96.8	€0.541
	30 bulls selected from <u>5000</u> genomic tested from		
8	elite herds	€112.1	€0.681
	30 bulls selected from 5000 tested in elite herds		
10	and 200 tested in extreme nucleus herds	€128.6	€0.691
	20 bulls salested from 1000 consoris tooted from		
- 1	30 bulls selected from 1000 genomic tested from	C4 0 0 0	on 5.44
7b	elite herds with directed breeding advice	€186.6	€0.541
	30 bulls selected from 5000 tested in elite herds		
	and 200 tested in extreme nucleuus herds with	_	
10b	directed breeding advice 34	€218.4	€0.691

Cost & benefit from different schemes

Executive Summary.

- · Very high rates of return.
 - \in 1 = \in 50- \in 100, depending on uptake.
- Genomic schemes are more costeffective that progeny test schemes.
- Increasing accuracy of GS prediction can double rates of genetic gain.

Executive Summary.

- · Invest in genotyping females.
 - €250k in females = €20m per annum.
- Targeting of high merit herds with breeding advice.
 - Elite calves & accuracy.
- Important role for "Next generation" herds in future.
 - Elite calves, accuracy, R&D & focus.

ICBF...

31

Implications.

- Increased role for females.
 - Training & directed advice.
 - Moving away from 100 bulls & 100 dtrs.
- Working with elite herds.
 - Genotypes & phenotypes.
- Establishment of Next generation herds.
 - In conjunction with industry stakeholders.
- · Inbreeding through breeding advice.

Executive Summary.

- Bio-security.
 - Lay off GS bulls for potential return to AI.
 More cost effective than increasing PT.
- Inbreeding.

12-24 months

 Manage through targeted advice & Active Bull List. More cost effective than increasing PT.

38

Key Elements of Future Dairy & Beef Programs.

30 males

30 males

Time-lines ICBF Cattle Breeding Database -12 months -12 months Identification. Elite females identified based on index & diversity. Mating advice provided 3k females 100k females **Selection.** Calves born and selected based on genon 1 month diversity. 5000 males 1000 males 1-12 months **Rearing.** Calves reared in "High Health" ur 300 males 50 males Lease/ownership. Elite AI bulls identified. Lease/ 12 months arrangements established. Surplus bulls so 125 males 50 males 12-24 months **Collection.** Elite AI bulls moved to collection of 125 males 50 males 12-24 months **Processing.** Semen processed by AI centre 100 males 30 males 12-24 months **Distribution.** Semen distributed by AI Service P 100 males 30 males

Breeding Replacements. Semen used to breed Nat

Key Elements & Costs - DRAFT

	Elite	Next Generation	Cost
Number Herds	1,000	5	€500,000
Number Cows	100,000	1,000	€0
Genotype females	30,000	500	€1,525,000
Genotype males	5,000	500	€ 275,000
Commercial Al Bulls	15	15	€300,000
Additional AI bulls	10	10	€100,000

- Program costing €3million has potential to generate €200 million.
- · Many elements are already in place.

What next?

- · Comments & feedback.
- Webinar this Friday.
- · Develop up industry proposition.
- · Establish suitable funding model.
- Get started!

