

IRISH CATTLE BREEDING FEDERATION

Beef Genomic Evaluations.

Ross Evans

Department of Agriculture, Food and the Marine An Roinn Talmhaíochta, Bia agus Mara

Replacement index Apr16 official v Jul16 NON genomic new milk No of bulls 3795 correlation r = 0.931 Apr16 official = 56.96 {stdev = 56.75} Jul16 NON genomic = 55.7 {stdev = 50.8}

 \triangle \triangle \triangle Genomics included \bigcirc \bigcirc \bigcirc \bigcirc No Genomics

Update since last meeting

- \cdot New blending method
- New data, pedigree and genotypes
- Combining of maternal wwt and cow milk score

Blending method

- June method: Combined 2 sources of info: Traditional EBV and DGV
- Works okay where most of ancestry is also genotyped and where traits have a lot of data in traditional evaluations
- But: Many genotyped animals have no sire, dam or mgs genotyped
- Also traits like feed intake and cow live weight do not have a huge level of data
- Additional step needed

Sire file circulated

- · 3,795 beef Al sires
- \cdot 1,505 with a genotype and genomics
- \cdot 439 with a sire genotyped with genomics
- · 2,290 sires with no genotype
- · 86 sires requested but no sample back
- 51 with DNA received, awaiting genotypes
- 38 with poor DNA, DNA mis-match or other genotype problem

Replacement index Jul₁₆ NON genomic v Jul₁₆ with genomics new milk

No of bulls 3795 correlation r = 0.992

Juli NON genomic = 55.7 {stdev = 50.8}

Jul16 genomic = 56.62 {stdev = 50.16}

🛆 🛆 🛆 Genomics included 👘 🔿 🔿 🔿 No Genomics

Replacement index Jul₁₆ NON genomic v Jul₁₆ with genomics: genotypes sires

No of bulls 1505 correlation r = 0.984

Jul16 NON genomic = 61.31 {stdev = 62.39}

Jul16 genomic = 63.12 {stdev = 60.79}

🛆 🛆 🍐 Geno and sire geno 👘 🖸 🔿 🔿 Geno but NO sire geno

Combining maternal weaning weight and cow milk score

- Simple average of the two
- Weight according to single trait reliability
- If higher reliability for any one trait then more influence from that trait
- Not a huge difference as multi-trait evaluation will drive both in the same direction with correlation of 0.8

Replacement index Apr16 official v Jul16 with genomics new milk

No of bulls 3795 correlation r = 0.927

Apr16 official = 56.96 {stdev = 56.75}

Jul16 genomic = 56.62 {stdev = 50.16}

 Δ Δ Δ Genomics included \bigcirc \bigcirc \bigcirc \bigcirc No Genomics

Replacement index Apr16 official v Jul16 with genomics new milk

No of bulls 3795 correlation r = 0.927

Apr16 official = 56.96 {stdev = 56.75}

Jul16 genomic = 56.62 {stdev = 50.16}

Next Steps

- \cdot Updated calving run will be included
- Loading of files to the database
- Calculation of indexes for all animals
- New bull search facility to view impact of genomics on proofs
- Automation of evaluations (currently 197 different steps in process)

New bull search tab

Replacement Index									
Trait	Current Official Proof (Aug 2016)			Current Non-Genomic Proof (Aug 2016)			Previous Official Proof (Apr 2016)		
	Replacement Index (Rel)			Replacement Index (Rel)			Replacement Index (Rel)		
	Within	€150 (56%)	Across	Within	€150 (56%)	Across	Within	€150 (56%)	Across
	****			****			****		
	PTA	€ Contribution	Rel %	РТА	€ Contribution	Rel %	PTA	€ Contribution	Rel %
Calving Difficulty	4.51	8	56	4.8	6	42	5.2	4	40
Gestation	2.97	-7	52	2.78	-6	39	2.75	-6	35
Mortality	0.27	-2	46	0.25	-2	33	0.29	-2	31
Docility	0.08	1	58	0.02	0	46	0.01	0	44

Ability to see impact of genomics versus new data

