

IRISH CATTLE BREEDING FEDERATION

Herdbook technical meeting

Killeshin Hotel, Portlaoise. 1st November 2011.

© Irish Cattle Breeding Federation Soc. Ltd 2009

Agenda.

- Maternal weaning weight Ross.
 Update on female fertility.
- · Calving difficulty Francis.
- · Data reliability Andrew
- · Other projects Andrew
- · AOB.

Maternal weaning weight evaluation

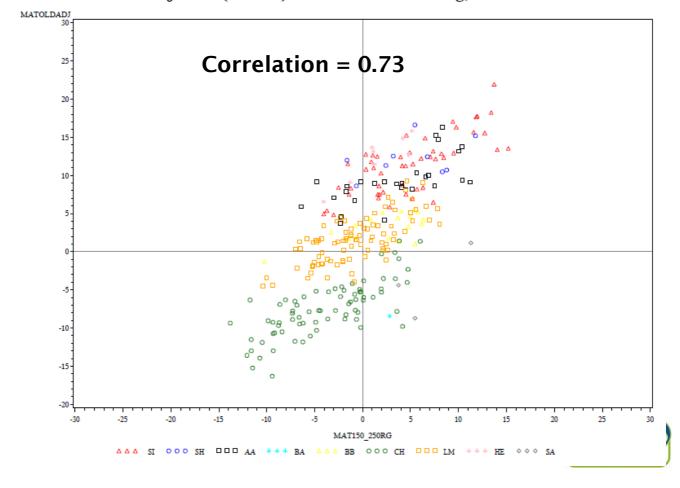
Changes since August meeting

3

- Reduced genetic correlation between direct and maternal weaning
- Predictor traits
 - Inclusion of Linear type Muscle composite and carcass traits with a mild negative correlation with muscle, weight and conformation and mild positive with carcass fat
 - Dairy herd milk yield, fat and protein yield as predictors for dairy cows and SI and SH
 - Reforming of breed groups: now 5 year groups
 - Splitting up of heterosis into beef x beef and beef x dairy
 4

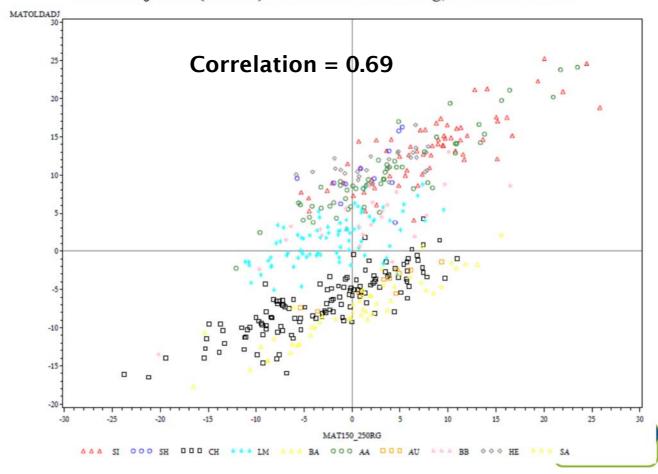
Possible predictor Trait	Current Milk pd	NEW Test Milk pd
Weaning weight	-0.10	-0.15
Carcass weight	-0.57	-0.43
Carcass conformation	-0.49	-0.33
Carcass fat	0.51	0.35
Skeletal Composite	0.03	-0.06
Muscle Composite	-0.03	-0.22
Development of hind Quarter	-0.32	-0.24
Loin Development	-0.37	-0.36
Current Milk index		0.71

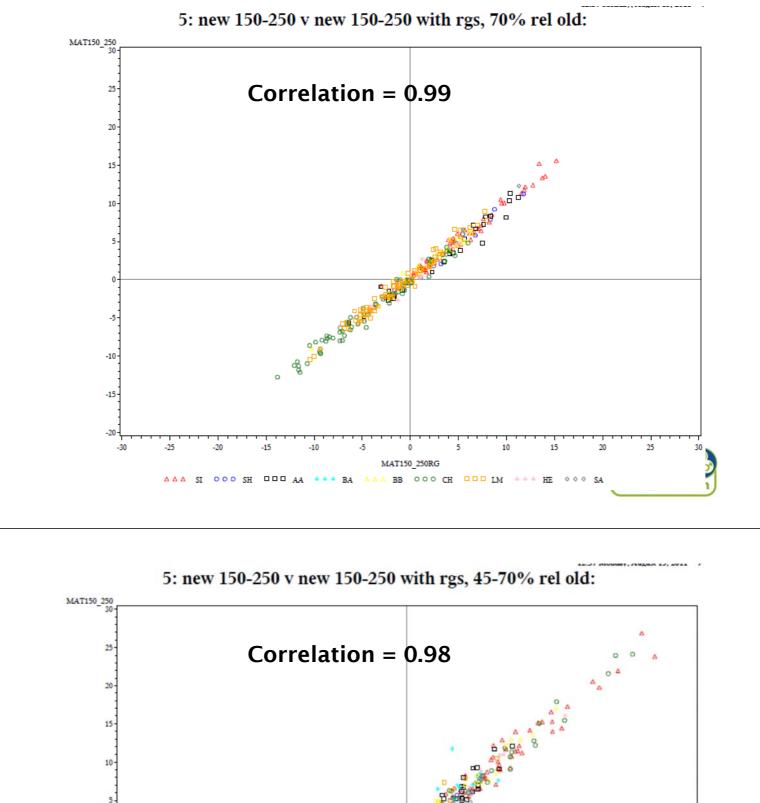
Correlations with other traits

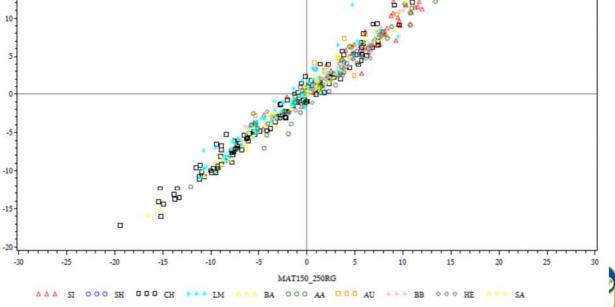

5

New data since August (with mgs)

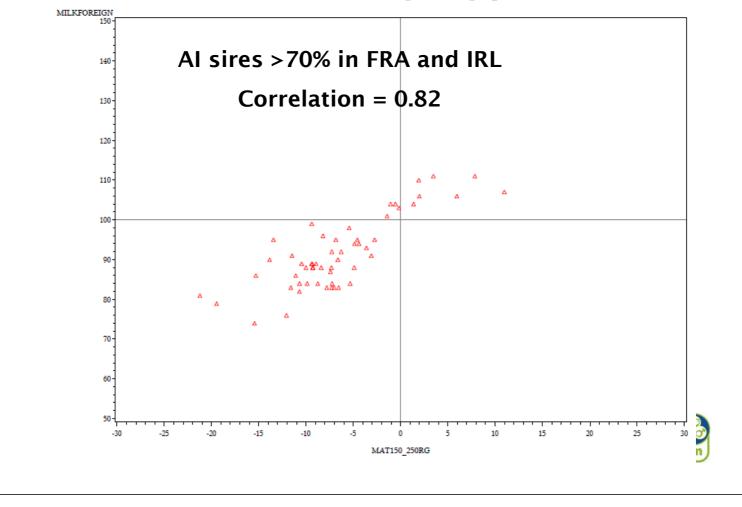
TRAIT	Aug-11	Oct-11	Extra
age 50-150	27,514	29,508	1,994
age 150-250	104,344	133,355	29,011
age 250-350	114,323	138,618	24,295
age 350-450	73,539	88,000	14,461
age 450-550	22,551	30,310	7,759
age 550-700	34,230	45,499	11,269
Total	376,501	465,290	

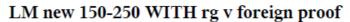


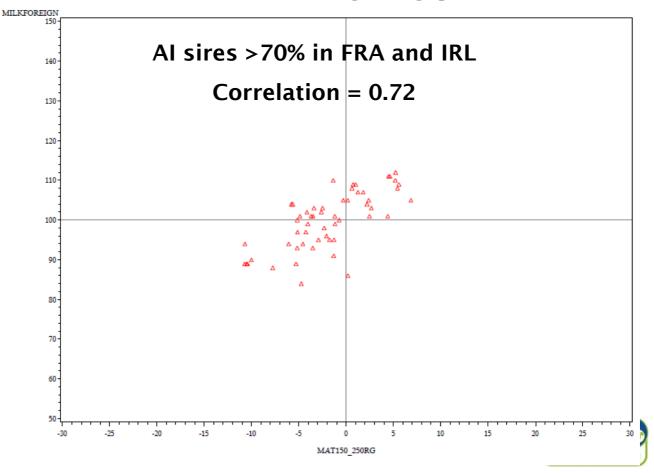

, August 15, 2011

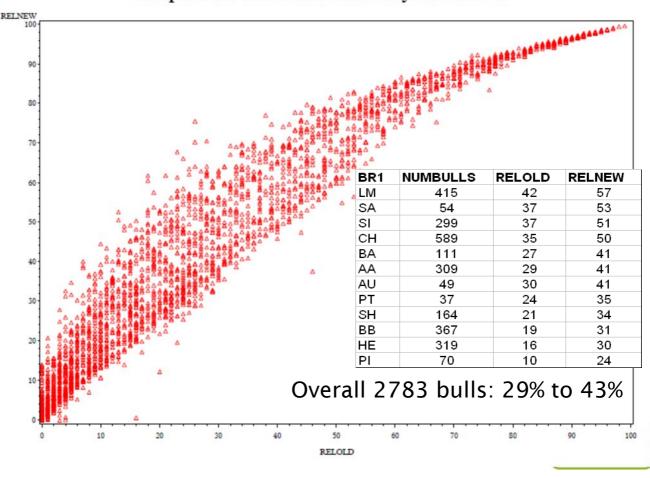


7: old adjusted (official) v new 150-250 with rg, 70% rel old:


7: old adjusted (official) v new 150-250 with rg, 45-70% rel old:






CH new 150-250 WITH rg v foreign proof

12:37 Monday, August 15, 2011 4

compare old versus new reliability for AI bulls

Compare AI sires across breed (>50% rel)

ACROSS Breed STAR	No. SIRES	Number of CG comparisons	Number of grand progeny	Progeny 150-250	Herdmate 150-250	Difference	Current milk pd
*****	192	32	60	305	298	7	15
****	190	37	59	297	293	4	9
***	219	51	106	297	295	2	3
**	230	37	73	293	294	-1	-2
*	265	35	65	295	298	-3	-9

Test ACROSS Breed STAR	No. SIRES	Number of CG comparisons	Number of grand progeny	Progeny 150-250	Herdmate 150-250	Difference	Test milk pd
*****	240	31	55	307	295	12	10
****	176	38	70	300	298	2	4
***	161	53	105	297	294	3	2
**	225	43	78	296	296	0	-1
*	294	33	68	289	297	-8	-8

5* Across breed current: 5 breeds represented

5* Across breed New: 12 breeds represented

>/ Monday, August 12,

Comparison of Grange cows

- Access to a milk yield estimate from Grange herd on 105 cows
- Calves weighed before and after and difference
 milk yield
- Average = 6.9 kg
- Min = 1.4, Max = 13.2, sd = 2.9
- 80 of the cows have weaning weight from linear scoring session (different weighing)
- \cdot Correlation of 0.43 with the new proofs
- Need to get access to the actual weights from this weighing session and include them into the evaluation and see the correlation
- Very useful independent measure of milk yield for comparison

Further work

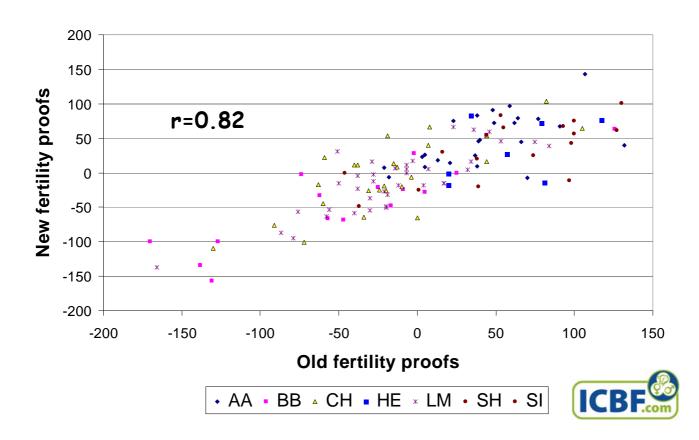
- New evaluation for industry meeting
 - Reliabilities update for new data
 - More new data to come as busy time for weanling sales
 - New data from last 3 months increased the sd of the proofs by 0.2 from previous run
 - Good quality weaning weight data in the 150-250 day age range is the key!
- Target implementation Dec 2011.

Beef Fertility evaluations

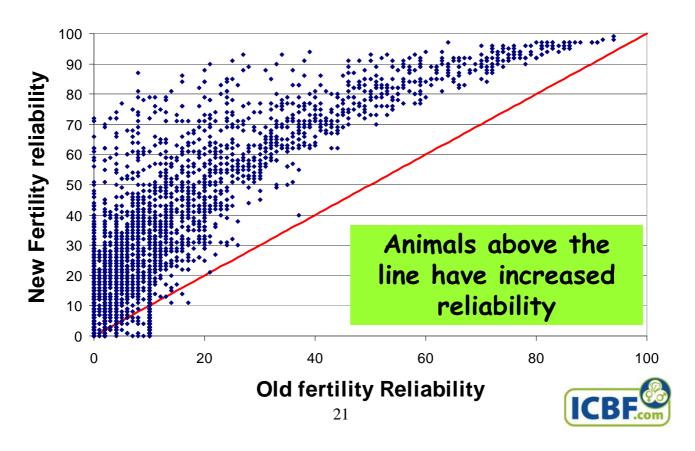
Current beef evaluations

17

- Parity 1 only
- Contemporary group defined within parity 1 animals (loss of data)
- Calving interval and survival in multitrait evaluation
- →Low reliability!!


New evaluation

- More data (i.e., more lactations and more recordings
 - suckler welfare scheme)
 - Lactations 1 to 10
 - Redefinition of contemporary group across parities
- Better statistical model increase heritability
 - Better definition of contemporary group for age at first calving
 - Repeatability model
- Use of predictor traits
- calving in the first 42 days of calving season (heifers and cows separately)
 - Live-weight, muscularity, docility, price, carcass traits, cow milk and docility scores


19

Relationship with old evaluation

Effect on reliability

Conclusions

- Work almost completed
- Testing of heterogeneity of variance
 - (caused by management differences between herds)
 - Age at first calving
 - Calving interval
- Work scheduled for coming weeks
- Target implementation December 2011.

Calving Performance Evaluations

Calving Performance

- Separate calving on heifers vs calving on later parities rather than including overall parity effect
- New genetic parameters
- Use gestation & mortality as correlated traits
- Dropping historical data

Calving Performance

- Currently based on parameters that were estimated a number of years ago
- Large increase in data in the last number of years
- Estimates of heritability based on records across all lactations
- Is heifer calving/gestation a different trait?

25

Current Model

- Evaluate calving difficulty, maternal calving difficulty, gestation, mortality
- No correlation between traits except a negative 0.7 correlation between direct and maternal calving difficulty
- Historical calving data used as a correlated trait for each trait

Heritabilities

Current Estimates

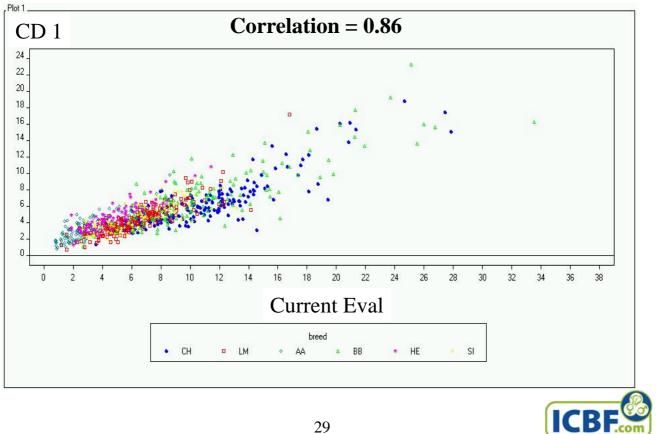
New Estimates

	heritability
Calving Diff	0.25
Gestation	0.40
Mortality	0.01

	heritability
Calving Diff	
1 st	0.13
Later	0.07
Gestation	
] st	0.45
Later	0.40
Mortality	No estimate

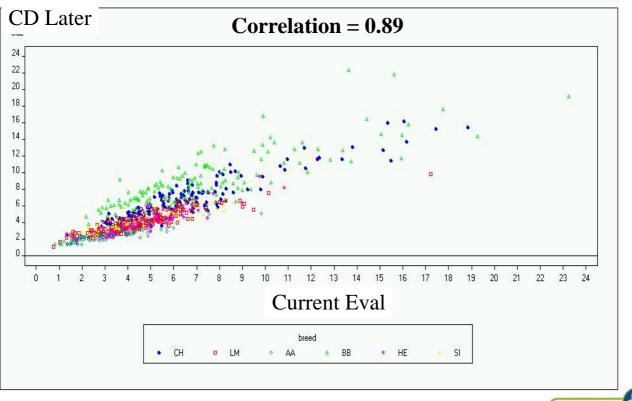
New estimates in line with those in the literature

27

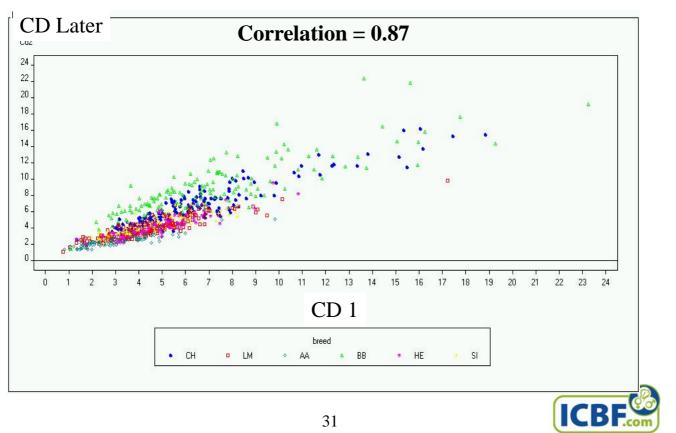

Correlations

Correlation between direct and maternal – current estimates indicate that daughters of bulls that are easy calving have difficulty calving themselves

	Current	New
CD-MCD	-0.7	
CD-MCD -1st		-0.48
CD-MCD - later		-0.24



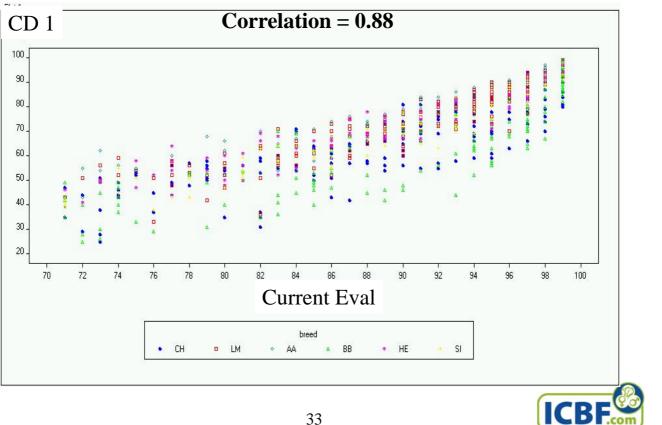
Results



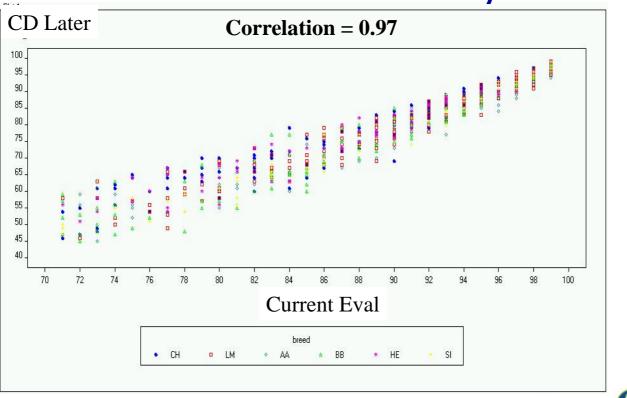
29

Results

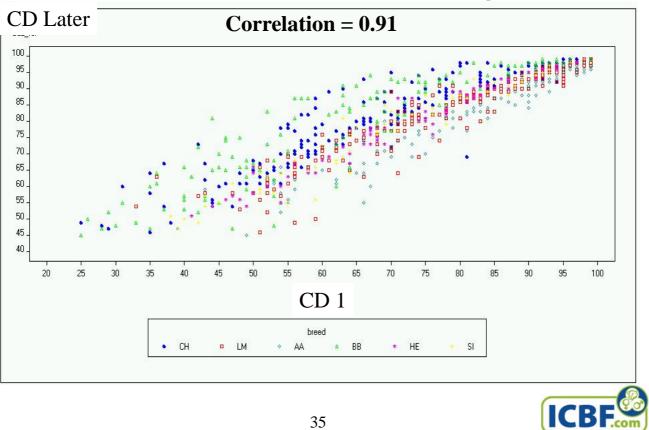
Results



Results


Variable	Ν	Mean	Std Dev	Minimum	Maximum
Current CD	795	7.51	4.54	0.8	33.6
CD Heifer	795	5.20	2.80	0.8	23.3
CD Later	795	5.27	2.98	1.1	22.3

Results - Reliability



Results - Reliability

Results - Reliability

35

Results

Variable	Ν	Mean	Std Dev	Minimum	Maximum
Current CD	795	90.1	8.0	71	99
CD Heifer	795	72.5	17.6	25	99
CD Later	795	80.6	14.2	45	99

Summary

- Correlations with previous proofs are high but significant individual changes
- · Some bulls easier on heifers?
- · Lower heritabilities for calving diff will result in lower reliabilities especially for new test bulls
- Biologically a model with 1st and later parities evaluated separately should be used for CD
- Publication of both traits with associated economic values?
- Direct calving will have less of an impact on maternal calving due to a lower correlation

37

Summary

- The new evaluation has passed Interbull tests for suitability for international evaluations for dairy bulls
- \cdot New gestation, mortality and maternal proofs will also be provided
- · Inclusion of foreign data is currently underway
- Feedback on the proofs is welcomed
- Target implementation December 2011.
- Future work in this area; incorporation of birth weight data to be collected in 2012+.

IRISH CATTLE BREEDING FEDERATION

Data Reliability <u>Proposition.</u>

Killeshin Hotel, Portlaoise. 28th October 2011.

© Irish Cattle Breeding Federation Soc. Ltd 2009 39

What is data reliability?

- The confidence that you can place in a bull (or cows) proof.
 - Higher is better.
 - Varies depending on trait (heritability).
 - Varies depending on "category" of animal (e.g., young bull, stock bull, AI bull).
 - Influenced by quality & quantity of data.
 - Based on the animals in the proof (can change as more data becomes available).

Current reliability limits.

- Database.
 - All evaluations are loaded regardless of data reliability.
- · ICBF Bull Search.
 - All evaluations are presented regardless of data reliability.
- · €uro-Star catalogues.
 - Evaluations for bulls that are bottom 10% for given trait (within breed) are presented as "not available".
- · ICBF Active Bull Lists (published).
 - Bull must be >=50% rel on SBV and >=50% rel on calving sub index to be on "published" list.
 - All Al bulls (& all information) presented on website list.

41

What are the issues?

- AI bulls appearing on website & active bull list with potentially 0% reliability for certain traits.
- Reliability criterion on catalogues doesn't appear to be "consistent" across traits.
 Single criterion for all traits?
- There is little understanding of the concept of reliability.
 - What is ICBF & Teagasc's role?
 - To "protect" farmers or instil the principle of "buyer beware".

Propositions (i)

- 1. Undertake an analysis of all traits *(including new traits)* and revert with a proposition regarding publication criterion for each.
 - Database, website, catalogues & Active Bull List.
- 2. Initiate a piece of work to provide more detailed information around each trait and for each animal (on website).
 - Number of registered progeny.
 - Number of records in each evaluation.
 - Broken down by pedigree and commercial.

43

Propositions (ii)

- 3. Highlight (on website and potentially bull lists) bulls that are deemed proven for; (i) calving, (ii) terminal, (iii) maternal & (iv) overall indexes.
- 4. Initiate a piece of work with Teagasc to promote understanding of the term "data reliability".
- 5. Launch herd "data quality" index.
- 6. Are there other pieces of work that we should be doing?

IRISH CATTLE BREEDING FEDERATION

Other projects.

Killeshin Hotel, Portlaoise. 1st November 2011.

© Irish Cattle Breeding Federation Soc. Ltd 2009 45

Other projects (i)

- On-farm weight recording using weigh scales, platform, "blue-tooth" technology & handhelds.
- · Birth weight project.
- Herd data quality index & recording protocol document.
- G€N€ IR€LAND.

Other projects (ii)

- · Stock bull durability.
 - Initial analysis; Service days, service years & stock bull score. No indication of genetic variance.
 - Highly relevant and interesting trends for ICBF and beef herdbooks.
 - · Pedigree bulls versus non pedigree bulls.
 - Time to be devoted at next HB technical meeting.
- Testing the accuracy of maternal proofs.

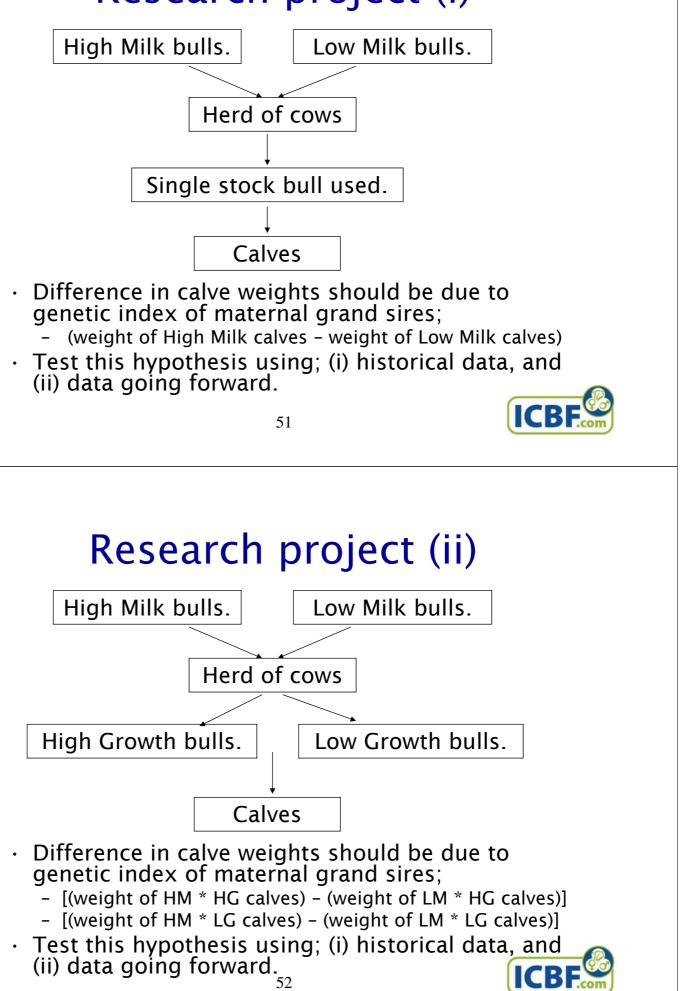
IRISH CATTLE BREEDING FEDERATION

Testing the accuracy of maternal proofs.

Killeshin Hotel, Portlaoise. 1st November 2011.

How should we test the "accuracy" of proofs?

- · Weanling & carcass traits.
 - Results from research & National data have confirmed the value of €uro-stars.
- Maternal milk traits.
 - Results more difficult to ascertain due to complexity of separating direct and maternal effects in raw data.
 - Need a "more structured" approach.


49

Proposition.

- Project involving ICBF, Teagasc and beef herdbooks.
- Identify G€N€ IR€LAND & pedigree herds with good ancestry and data recording (~30 herds * 1000 cows).
 - Range of maternal grand sires used (high milk bulls & low milk bulls).
 - Using one of more bulls (AI or stock bull) to breed calves.
- Evaluate performance of progeny.
 - Accurate recording of all relevant data.
 - Birth weight & multiple on-farm weights.

Research project (i)

What next?

- Identify ~30 herds (15 G€N€ IR€LAND & 15 pedigree) to be involved in the project.
- · Undertake analysis of "historical data".
- Ensure data capture systems are in place for future data.
 - Same/similar herds as "birth weight" project.
- · Valuable reference point going forward.
- Feedback?

